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Abstract

New exact analytical solutions are presented for both stress and velocity fields for a Coulomb—Mohr granular solid
assuming non-dilatant double-shearing theory. The solutions determined apply to highly frictional materials for which
the angle of internal friction ¢ is assumed equal to 90°. This major assumption is made primarily to facilitate exact
analytical solutions, and it is discussed at length in the Introduction, both in the context of real materials which exhibit
large angles of internal friction, and in the context of using the solutions derived here as the leading term in a regular
perturbation solution involving powers of 1 — sin ¢. The analytical velocity fields so obtained are illustrated graphically
by showing the direction of the principal stress as compared to the streamlines. The stress solutions are also exploited to
determine the static stress distribution for a granular material contained within vertical boundaries and a horizontal
base, which is assumed to have an infinitesimal central outlet through which material flows until a rat-hole of parabolic
or cubic profile is obtained, and no further flow takes place. A rat-hole is a stable structure that may form in storage
hoppers and stock-piles, preventing any further flow of material. Here we consider the important problems of two-
dimensional parabolic rat-holes of profile y = ax?, and three-dimensional cubic rat-holes of profile z = ar*, which are
both physically realistic in practice. Analytical solutions are presented for both two and three-dimensional rat-holes for
the case of a highly frictional granular solid, which is stored at rest between vertical walls and a horizontal rigid plane,
and which has an infinitesimal central outlet. These solutions are bona fide exact solutions of the governing equations
for a Coulomb-Mohr granular solid, and satisfy exactly the free surface condition along the rat-hole surface, but
approximate frictional conditions along the containing boundaries. The analytical solutions presented here constitute
the only known solutions for any realistic rat-hole geometry, other than the classical solution which applies to a
perfectly vertical cylindrical cavity.
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1. Introduction

A rat-hole is a stable two-dimensional slot or channel, or three-dimensional cylindrical cavity, that may
form in storage hoppers and stockpiles and prevent further material falling through the outlet. It is not a
desirable phenomena for any industry because it disrupts the flow of the material. Removing a stable rat-
hole from a stockpile or hopper is an additional manual procedure that costs both time and money, and
which may be dangerous, since people have died from attempting to remove stable rat-holes formed in
grain silos. Very little theoretical information is known about the formation of rat-holes, and whether an
existing formed rat-hole is stable or unstable. These are important issues, that have yet to be properly
addressed in the literature. In this paper we present exact analytical solutions for both the two and three-
dimensional tapering rat-holes depicted in Figs. 1 and 2. We note that such rat-holes have not been studied
previously, and our solutions constitute the only known analytical solutions for these physically realistic
situations. These exact solutions for the non-dilatant double-shearing theory and the Coulomb-Mobhr yield
condition, are obtained by assuming that the angle of internal friction ¢ = 90°. Physically, this assumption
might not be precisely realizable, but mathematically, the solutions presented provide the limiting behavior
for real materials which might be termed “highly frictional granular materials”, which do indeed exist as
evidenced by the data in Table 1. This assumption is discussed at length subsequently, but here we simply
note that for those problems which may be solved numerically for the full range 0 < ¢ < ©/2, such as the
problem of gravity flow from a hopper (Hill and Cox, 2001b) the case ¢ = m/2 is seen to behave both
qualitatively and quantitatively the same as other values of ¢ such as ¢ = n/3 and =/6.

Jenike (1962a,b) and Jenike and Yen (1962a,b) attempt to establish a theory of rat-hole stability, usually
termed classical rat-hole theory. However, Hill and Cox (2000) re-examine this theory and show that some
of the assumptions of the so-called “Jenike stable rat-hole equation™ are invalid. Practising engineers be-
lieve that classical rat-hole theory does not reflect actual material behavior. One of the reasons that classical
rat-hole theory is not well accepted is because a rat-hole is assumed to be a perfectly vertical cylindrical
cavity with stresses within the rat-hole which are independent of height. In reality, rat-holes tend to exhibit
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Fig. 1. Coordinates for the two-dimensional quadratic rat-hole showing stresses on the horizontal and vertical boundaries.
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Fig. 2. (a) Three-dimensional visualisation of the cubic rat-hole occurring within a cylindrical bin. (b) Coordinates for the three-
dimensional cubical rat-hole showing stresses on the base and on the cylindrical surface of the bin.

Table 1

Measured values of ¢, and sin ¢, for certain granular materials, where ¢, is the effective angle of internal friction
Granular material Measured of ¢, Sin ¢,
Coal 69.82, 73.24, 76.62 0.938, 0.957, 0.973
Alumina filter cake 70.14 0.94
Waste rock 76.91 0.974
Silica 78.34 0.979

some variation with height, and we refer the reader to Hill and Cox (2001a) for details. Here, we are
primarily concerned with the determination of the stress profile within an existing defined rat-hole. Hill and
Cox (2001a), have presented analytical expressions for the stress profile for slightly tapered cylindrical
cavities. Approximate stress and velocity solutions for gravity flow within tapering channels and tubes have
been given by Spencer and Bradley (1992, 2002). Hill and Cox (2002a) have extended existing rat-hole
theory to include granular materials which satisfy the more general shear-index yield condition. Recently,
Cox et al. (submitted for publication) has determined analytical exact solutions for two and three-
dimensional sloping rat-holes in highly frictional granular solids. Here, we solve the corresponding prob-
lems, but for rat-holes of parabolic and cubic profiles as indicated in Figs. 1 and 2.

Jenike (1962a, 1964, 1965) and Johanson (1964) examine radial flow solutions for which the equilibrium
equations and the Coulomb-Mohr yield condition reduce to give two highly non-linear coupled ordinary
differential equations for the determination of the stress field. These solutions have been re-examined by
Bradley (1991) and Spencer and Bradley (1996). In general, the two highly non-linear coupled ordinary
differential equations can only be solved numerically. However, based on the assumption that the angle of
internal friction ¢ = 90°, or =1 where § = sin ¢, an exact parametric solution for flow from a two-
dimensional converging wedge shaped hopper has been derived analytically (Hill and Cox, 2001b). Fur-
thermore, essentially the same exact parametric solution has been exploited for the stress distribution
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beneath a two-dimensional wedge shaped sand-pile (Hill and Cox, 2002b). This solution is the first exact
solution of these highly non-linear coupled ordinary differential equations involving two arbitrary con-
stants.

Another exact solution of these equations is obtained from the special case § = —1 and is given in Cox
and Hill (2003). Although this special case is completely non-physical, the special case of f =1 does give
rise to an idealized mathematical theory, applying to those granular materials which might be termed
highly frictional, such as those shown in Table 1. We comment that the data given in Table 1 refers to the
effective angle of internal friction ¢, which is approximately between 0° and 10° in excess of the actual
angle of internal friction, noting that for a cohesionless material, the effective angle of internal friction ¢,
coincides with the angle of internal friction ¢. In addition, the major issue here is not the actual magnitude
of the angle of internal friction, but rather the proximity of the sine of the angle in relation to unity, noting
that sin 64° = 0.9. However, apart from Sture (1999) who reports angles of internal friction in the range of
70°-75° for materials under a confining pressure, there does not generally seem to exist any extensive
published data for materials possessing effective angles of internal friction comparable to the high values
reported in Table 1. We find, for example, from the Australian Standard (1996, p. 23) that black and
brown coal, and from Perkins (1994, 1995) that certain highly angular dense soils, all exhibit relatively high
values of the effective angle of internal friction in the range of 60°-65°, and sin60° = 0.8660 and
sin 65° = 0.9063.

For the mathematical solutions arising from the assumption ¢ = n/2, we make the following comments.
Firstly, we observe from the Coulomb-Mohr yield condition |t| < ¢ — otan ¢, that while tan ¢ tends to
infinity as ¢ tends to 7/2, along the yield surface the normal component of traction ¢ tends to zero in such a
way that the product o tan ¢ remains finite. Physically, this is equivalent to slip occurring along an infinite
friction surface (see Lynch and Mason, 1993, 1995) with both zero normal and tangential shearing and
through every point, there is a traction free surface. We emphasize that the assumption of ¢ = /2 does not
correspond to a perfectly rough material where infinite friction prohibits any relative movement of con-
tacting particles. Secondly, for the special case of ¢ = /2 the two families of generally distinct slip-planes
coincide (see Section 5). Lastly, we also observe that as ¢ tends to n/2, the maximum principal stress (given
by 61 = —p + g where p and ¢ are the stress invariants defined by (2.3) or (2.21)) tends to zero. Accordingly,
the material fails in the direction of oy; (611 = —p — ¢), which has the larger magnitude (see also Section 5).
Further, on rewriting the governing equations in the forms given by (2.11) and (2.29) for two and three
dimensions, it is evident that approximate perturbation solutions involving powers of 1 — sin ¢, as given in
(2.12) and (2.30) respectively, are possible. Such perturbation schemes would give rise to approximate
analytical solutions for materials possessing angles of internal friction ¢ such that 1 — sin ¢ approaches
zero. Thus, it is clear from (2.11) and (2.29) that the exact parametric solutions presented here are precisely
the leading term of the respective perturbation schemes.

In the recent paper of Cox et al. (submitted for publication), the equilibrium equations, the Coulomb—
Mohr yield condition and the assumption of the angle of internal friction ¢ = 7/2, reduce to give two novel
non-linear partial differential equations for the determination of the stress field for the two situations of
plane strain deformations and for axially symmetric deformations (see Eqs. (2.10) and (2.28)). By solving
these equations, we may derive the exact analytical solutions for the stress distribution within a wedge and
cone shaped rat-holes (Cox et al., submitted for publication). In addition, these equations give rise to a
number of solution types which are examined in Thamwattana and Hill (2003). In particular, one of the
solution types corresponds to the solutions which have been used in Hill and Cox (2001b, 2002b), Cox and
Hill (2003) and Cox et al. (submitted for publication). In this paper we examine further special exact so-
lutions of these novel equations which may be used to determine stress distributions for physically more
realistic rat-hole geometries. Here, we assume rat-hole geometries comprising an upper perfect curved
portion, resting on a rigid base with an infinitesimal central outlet as indicated in Figs. 1 and 2 for two and
three dimensions respectively, and contained within vertical boundaries as shown.



N. Thamwattana, J.M. Hill | International Journal of Solids and Structures 40 (2003) 5923-5948 5927

In the following section, we briefly state the basic equations of non-dilatant double-shearing theory of
granular flow for both plane and axially symmetric flows. On assuming an angle of internal friction
¢ =n/2 (f =1), we may deduce the basic governing partial differential equations for the stress and velocity
profiles for both two and three dimensions. In Section 3, the exact analytical solutions of the governing
equations for both plane and axially symmetries as determined respectively in Appendices A and B, are
used to determine the stress profiles in rat-holes of parabolic and cubical profiles. Numerical stress profiles
are shown graphically in Section 4. In the final section, the solutions for the velocity fields are illustrated
graphically by showing the streamlines which represent the path of the flows together with the principal
stress directions.

2. Basic equations for two and three dimensions

In the following two subsections we state briefly the basic equations of the continuum mechanical theory
of granular material for quasi-static steady flow conforming to the Coulomb—Mohr yield condition for two
and three dimensions.

2.1. Two-dimensional plane strain equations

In rectangular Cartesian coordinates (x, y,z) we consider the flow in the (x, y) plane, with y-axis vertically
upwards. For steady quasi-static flows, the inertia terms may be neglected and therefore for plane strain
conditions, the non-zero Cauchy stress components satisfy the equilibrium equations

00,, 0Oay, dao da,,

XX xy — 07 xy »y _ , 21
Ox oy Ox + Jy rs 1)

where p denotes the bulk density, assumed constant, g is acceleration due to gravity and o,,, 0., and o,

denote the usual in-plane Cauchy stress components which are assumed to be positive in tension. These

components can be expressed in standard form

0w =—p+qcos2y, o,=—-p—qcosdy, o, =gqgsin2y, (2.2)
where p and ¢ are the stress invariants defined by

p= _%(O'xx + O-W)’ q= %{(Uxx - UW)Z + 40§y}1/27 (23)
while the stress angle i, which is the angle between the maximum principal stress and the x-axis, is given by

20y,

tan2yy = ————. 2.4
(0 — o) @4)

The stress relations are completed with the assumption of the Coulomb-Mohr yield condition
g = psin ¢ + ccos ¢, (2.5)

where ¢ denotes the angle of internal friction and ¢ denotes the cohesion, both of which are assumed to be
constants. The above equations are generally accepted as a reasonable basis for the determination of the
stress components.
On substitution of (2.2) and (2.5) into (2.1), we obtain
g = P {pgBsin 20 + 2q1h, sin 20—, (B + cos )},
p=1 (2.6)

p
=

D=7 {pg(1 — Bcos2y) + 2q[ i, (B — cos 2yr) — y, sin 20/},
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where § = sin ¢. From (2.6) it is clear that § = +1 give rise to the special cases. We rewrite (2.6) in the form

(B = 1)(gxcosy + gy singy) = pgfsiny +2fq(p, singy — , cos ),

. ) (2.7)
(B+1)(gusin — g, cos ) = pgBeosy — 2Bg(, cosy + v, sin ),
and in particular when f = 1 it follows from (2.7); that ¢ is given explicitly by
_rg 1 (2.8)

T v eoty)”
while from (2.7), for f = 1 we have
2(gsin), = pgeosy +2geosy),. (29)

and on substitution of (2.8) into (2.9) and simplifying, we obtain the novel non-linear partial differential
equation

e — 2hhyy, + W*hy, = 0, (2.10)
where A(x,y) = coty. We observe that in the other special case of f = —1, we may deduce the same Eq.
(2.10) in a similar manner but where 4(x,y) = —tany. Since this case is non-physical, it will not be dis-

cussed here. We note that Egs. (2.7) can be rewritten as

pgsin -+ 2q(0, siny — y, cos ) = (1 — P)lpgsin iy — g, cosy — g, sin s + 2q(, sin Y — ¥, cos )],
pgeosy —2(gsiny), +2(gcosy), = (1 — B)[pgcosy — qcsiny + g, cosyy — 2q(y, cosyy + ¢, sin )],
(2.11)

which it is clear that these equations admit perturbation solutions of the form

¥ =Y(x,y) + e (x,3) + O(€),  q=qo(x,y) + eq1(x,p) + O(c7), (2.12)

where e = 1 — f, with (2.12) satisfying (2.8) and (2.9) to leading order.

Next for the associated velocity profile, here we assume the non-dilatant double-shearing theory
(Spencer, 1964, 1982). For steady flow, the non-zero velocity components u(x, y) and v(x,y) in the x and y
directions respectively, are assumed to satisfy the equations

ou v
i Tk 2.1
. + 3 0, (2.13)
ou v ou v ou v
—+— 2 — | ———=— )sin2 i ———42Q2) =0 2.14
<ay+ax>cos v <6x ay>s1n l,b+s1n¢<ay T > ; (2.14)
where for steady flow 2 is defined by
oy oY
Q=u— —_—.
“ox tu dy
Next we introduce a stream function y(x,y) defined by
u(xay) = Xy U(an’) = —Xx (215)

which now satisfy (2.13) automatically, and on substitution of (2.15) into (2.14) we may deduce

(€05 20+ Bty — 2ty sin 20— (cos 20~ P = 2651, (2.16)
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where O(y, x)/0(x,y) denotes the usual Jacobian. Here for the special case of f = 1 we may obtain

(v, 2)
Lo O Y — 257 COLY + 1 = — 2 2= 2.17
Yy COU Y — 2, cotif + 1, = —cosec™y 30ry) (2.17)
and in terms of A(x,y) = coty this equation becomes
o(h, )
Yo — 2h) Wy = 1oL, 2.18
Kxx /ny =+ ny a(x7y) ( )

2.2. Three-dimensional axially symmetric equations

In terms of cylindrical polar coordinates (r, 6,z) we consider steady quasi-static axially symmetric flow
with the z-axis vertically upwards. In this case the non-zero components of the stress tensor satisfy the
equilibrium equations
00, 00.. 0.

aarr aO-rz O — 000
—0 90z | 0 _ 2.19
o 0z r T or + Oz + r o PE (2.19)

where p denotes the bulk solid density, assumed constant, g is the acceleration due to gravity and a,,, 0,-, 0.,
and oy denote the usual physical Cauchy stress components which are assumed to be positive in tension.
Again, these components can be expressed in the standard form

O =—p+qcosy, o0.=—p—qcosy, o,.=gqsin2y, (2.20)
where the stress invariants p, g and the stress angle  are defined by
pP= _%(O-rr + azz)a q= %{(O_rr - O-zz)z + 4032}1/21 (221)
24,
tan2y = ——"= . 2.22
an lp (O-rr - O-zz) ( )

For a granular material with cohesion, the stress relations are completed with the assumption of the
Coulomb-Mohr yield condition (2.5). The above relations are generally accepted as a reasonable basis for
the determination of the stress components. Further, we need to assume a stress state corresponding to one
of the Haar-von Karman regimes, which here we adopt

Ogp = —p +4. (2.23)
On substitution of (2.5), (2.20) and (2.23) into (2.19), we obtain

B
B -1

= {peltsini + 241, sin 20— (9 + cos2)] 41 g(p— Dieos2y 1) .

(2.24)

. {pga ~ Beos2) + 2ql, (B — cos2) — . sin2y] + - g(f ~ 1) sinzw},

__ b

g -1
where f§ = sin ¢p. From (2.24) it is again clear that special cases arise from § = +1. We again rewrite (2.24)
in the form

(B —1)(grcosyy +q.sinyy) = pgfsiny + 2Bq (Y, sinyy — . cos ),

. . 1 . (2.25)
(B+1)(g, sin ¥ — g.cos ) = pghcos iy — 2ﬁq(w,.cosw +ysiny 4+ sin w),
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so that for the special case of § = 1, it follows from (2.25), that ¢ is given explicitly by

pg 1
q= - 2.26
2 [, —vcoti)’ (226)
while from (2.25), for f =1 we find
2q .
2(gsiny), = pgcosy + 2(gcosy), _7q sin v, (2.27)
and on substitution of (2.26) into (2.27) and simplifying, we obtain
1
hy. — 2hh,. + h*h.. — —(h, — hh.) = 0, (2.28)
r
where h(r,z) = cotyy. We observe that in the special case = —1 which arises from assuming
oo = —(p + q), we may deduce (2.28) in a similar manner, but where A(r,z) = — tany. Again this is non-

physical and this case will not be discussed here. We note that Eq. (2.25) can be rewritten as
pgsin i+ 2q(, siny — v, cos ) = (1 — B)pg siny — g, cos ¥ — g. sin + 2¢(4, sin iy — y, cos )],

. 2q .
pgcosy —2(gsiny), +2(gcosy), — Tq sin

—(1-p) pgcosw—qrsinw+qzcosw—2q<wrcosw+wzsinw+% sinw)}

(2.29)
which it is clear that these equations admit perturbation solutions of the form

Y= lﬁo(rvz)Jrﬂﬁl(r’Z) J’_O(Ez)’ (I:ro(”7z)+€Q1(raZ) +O(62)a (230)

where e = 1 — 8, with (2.30) satisfying (2.26) and (2.27) to leading order.

Next for axially symmetric flow, we also assume the non-dilatant double-shearing theory (Spencer, 1964,
1982) to determine an associated velocity profile. For steady flow the non-zero velocity components u(r, z)
and v(r,z) in the » and z directions respectively, satisfy the following equations

ou v u
+

T 2.31
or * oz r 0, (231)
ou Ov ou Ov u Ov
<§+6r> cos 2y — (5—a—>sm2lp+sm¢(——a—+29> 0, (2.32)
where for steady flow Q is defined by
_ oy
Q U§ —+ Ua—
Here the stream function y(r,z) is defined by
1 1
= =——) 2.
u(r’z) rAZ7 U(r7z) r/v}"? ( 33)

which satisfies (2.31) automatically, and on substitution of (2.33) into (2.32) we may deduce

(€08 20+ B~ 22520 = (€082 = P+ ,(c0s20 — )+ rosin2y = <2 (234)

where O(y, x)/0(r, z) denotes the usual Jacobian. For the special case of f = 1 we may obtain

1 1 0
.. cot? Y — 2y, coty 4y, — —x, + — 1. coty = —cosec’y W, ) , (2.35)
r r o(r,z)
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and in terms of A(r,z) = coty we have

1 A
'\ J— 2 4 2’\ _— —_ ' frnd ~ . 2
Tor = 2R + Wz = (- — hy.) 30r2) (2.36)

3. The rat-hole problems

In this section we apply the two- and three-dimensional exact parametric solutions of (2.8), (2.10), (2.26)
and (2.28) as derived in Appendices A and B to determine the stress profiles in parabolic and cubical shaped
rat-holes (see Figs. 1 and 2) which are considered to be realistic rat-hole profiles, like those occurring in
practice in various granular industries.

3.1. Two-dimensional quadratic rat-holes

Here we assume that a rat-hole occurs when material is stored between vertical rigid walls and is at rest
on a rigid base, which has an infinitesimal central outlet as shown in Fig. 1. The rat-hole comprises the
upper quadratic portion, which is assumed to be determined by y = ax? (¢ > 0) and the half length of the
rigid base is £ and the height of the boundaries is af>. As shown in Appendix A, Egs. (2.8) and (2.10) admit
the following exact parametric solution

{C; +4x? (1(s) + ZG‘S/ZS"/Z)Z]

2 s/ P
= — = x(I 2 s/2,—1/2 _ _ s
coty ng( () +2e%717), ¢ ac2 1(s) 7
2(s7 U (s) + I(s) + 2e/2571/2 *
y=2 1) (é)z = )7 I(s) :/ e o ' do + C, (3.1)
2

where C; and C, denote arbitrary constants. In order to apply the two-dimensional exact parametric so-
lution (3.1) to determine stress profiles in two-dimensional parabolic rat-hole with a central outlet, we first
need to determine the appropriate boundary conditions.
For the stress free condition along the surface of the rat-hole, we require both the tangential and normal
stresses to vanish, namely
o, =o0,sinA+0,cos1=0, 0,=0,cosl—0,sinl=0, (3.2)

where / is the angle defined in Fig. 1, while o, and o, denote respectively the horizontal and vertical
components of the stress vector defined by

Oy = Oxilly + Oylly, Gy = Gylly + Gy, (3.3)
and n, and n, denote the corresponding components of the normal to the surface, and note that
tan A = —n, /n} On assuming the surface of the rat-hole is defined by y = ax? thus we have

2ax 1
- _ n, =

(1 —|—4azxz)l/27 (1 —|—4az)c2)l/27

from which we obtain 4 = tan~!(2ax). On substitution of (2.2) and (2.5) (assuming ¢ = 90°) into (3.2) we
may deduce the boundary condition along the surface of the rat-hole, namely = tan~!(2ax) & n/2, which
can be simplified to obtain

—coty = 2ax. (3.4)
Next for convenience we introduce Cs such that

I(s) = / 20\ 2dw + G, (3.5)
0
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and upon letting s = s; as the parameter value along the base (y = 0), we obtain from (3.1);
21/ zs}/ 2
(s14+1)

which evidently implies that the constant C; must be negative. Next we introduce s = s, as the parameter
value along the rat-hole surface. On substitution of (3.4) into the two-dimensional exact parametric so-
lution (3.1), we find that (3.1),; gives

[(S]) = — 5 (36)

aC? = I(s,) + 2%/, (3.7)
and along the curve y = ax? which is the surface of the rat-hole, we also have from (3.1); that
aC? = 55 I(s,) + 1(sy) + 2655, ', (3.8)

thus from (3.7) and (3.8) we may deduce s5'/(s2) = 0, which gives either s, = oo or I(s,) = 0. We note that
these two conditions cannot be true simultaneously, for otherwise aC3 = 0. From (3.1),, in order for g to be
finite, we are unable to adopt I(s;) = 0 and thus we have s, = co which, together with (3.7) and (3.8)
becomes

aC; = I(c0). (3.9)

Now in order to determine the four constants «, s;, C, and C;, and since we cannot satisfy pointwise stress
conditions at the boundaries, we assume that there are effective frictional coefficients y; and u, along the
vertical boundary and along the base respectively such that F{ = y;N, and F, = u, N, where

al? —s1/2 -3/2
pg 5 4e s
F e ‘Cfd :——f 7—1()() R
' A 7o %§<<ﬁ+w (0

2 s (3.10)

14
Pg p 1
B=[ oydx=-F2p2—
2/00y 2 s

¢ 4 pg e
N, = opdr=—-"2p "1
’ /o ” 3G (st1)

Now from F; = p;N; we may deduce

,Sl/zsl—3/2

_ 4e=/25 7 3C2y,

I = — A1
() =—5F10 2 (3:11)
and from F = u,N, we may obtain
8 e /212
C:=_p—1 3.12
2 3 J25) (Sl + 1) ) ( )
so that on substitution of C3 into (3.11) we may deduce
4e—51 /2S*3/2
I =— "L (1- 1
(OO) (Sl + 1) ( :ul:u2)1 (3 3)
and further on substitution of (3.12) and (3.13) into (3.9) we obtain
a 3 w (3.14)

- 20sy Uy



N. Thamwattana, J.M. Hill | International Journal of Solids and Structures 40 (2003) 5923-5948 5933

Next in order to determine C; we rewrite I(s) which is defined in (3.5) in terms of an error function thus
from (3.6) and (3.13) respectively, we may deduce the following equations
2e‘s1/2s}/ 2

12 _
V2merf(s, /2)'? + C; = G D)

)

3.15
4e‘s1/2sf3/2 G.13)

(s1+1)

which by subtracting these two equations we may obtain the transcendental equation for s;, namely

V2n+ Gy = (1= ),

46_51/25‘;3/2 26_S1/2Si/2

(S1+1) (17/11#2)4» (

V21 — V2merf (s, /2)"* = O

(3.16)

On rewriting (3.16) as

1 —s1 /2172
Mty =1 ——e‘“/ZSf/Z(s] + 1) V2 — v27terf(s1/2)l/2 — 267S1 ,
4 (s1+1)

so that the effective frictional coefficients y, and u, must satisfy the inequalities 0 < p,p, < 1.

3.2. Three-dimensional cubic rat-holes

Here we assume that a stable rat-hole occurs when material is stored within a cylindrical bin which has
infinitesimal central outlet at the base as shown in Fig. 2. The rat-hole is assumed to comprise an upper
cubic portion which is defined by z = ar* (a > 0) and contained within a cylindrical bin of radius ¢ so that
the height is af3. As shown in Appendix B, Egs. (2.26) and (2.28) admit the following exact parametric
solution

{Cg +9r4(1(s) + 36’5/3s’2/3)2]

3, o pg
(= — 2] 30534213 _
coty C§r (I(s) +3ePs77), ¢ 12C3 rl(s) ’
3 2 ,1[ 41 +3 —s/3,-2/3 s
z = d ( a (S) (Ci) : ’ ) ) [(S) = / eiw/3w72/3 do + C17 (317)
2

where C; and C, denote arbitrary constants. In order to apply the three-dimensional exact parametric
solution (3.17) to determine the stress profile in the three-dimensional cubic rat-hole occurring in the cy-
lindrical bin with a central outlet, we first need to determine the appropriate boundary conditions.

Following the two-dimensional solution, for the stress free condition along the surface of the rat-hole,
we require both the tangential and normal stresses to vanish, namely

o;=o0.sinl+0.cosA=0, 0¢,=0.cosL—0g,.sind=0, (3.18)

where Z is the angle defined in Fig. 2(b), while ¢, and ¢. denote the radial and vertical components of the
stress vector in the cylindrical coordinate system and which are given by

Oy = Oply + Ophz, O, = 0N, + O, (3.19)
where 7, and n. denote the corresponding components of the normal to the surface, noting that
tan 4 = —n,/n.. On assuming that the surface of the rat-hole is defined by z = ar®, we may deduce

3ar? 1
nr = - n. =

(1+9a2)"" 7 (14922
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which gives rise 2 = tan~!(3ar?). On substitution of (2.5) and (2.20) with the assumption of ¢ = 90° into
(3.18) we may deduce that the boundary condition along the surface of the rat-hole, becomes
Y = tan~'(3ar?) + n/2, which can be simplified to obtain

—coty = 3ar’. (3.20)
Next we introduce C; such that
I(s) = / e Bwdo + C;, (3.21)
0
and upon letting s = s be the parameter value on the base where z = 0, we have from (3.17); that
3e—51/35!/3
I(s)) = ——| 3.22
(0) =~ (3:22)

which again implies that the constant C; must be negative. Next we introduce s = s, as the parameter value
on the rat-hole surface. On substitution of (3.20) into the three-dimensional exact parametric solution
(3.17), we find that (3.17); gives

aCl = I(s,) + 3e /5,73, (3.23)
and on the surface of the rat-hole z = ar®, we also have from (3.17); that
aCl = 255 (sy) 4 1(s2) + 3¢ 5,77, (3.24)

thus from (3.23) and (3.24) we may deduce s,'1(s,) = 0 which gives either s, = oo or I(s;) = 0, and again
we note that these two conditions cannot be true simultaneously, for otherwise aC; = 0. From (3.17),, ¢
must be finite and thus /(s,) = 0 is not possible. Thus, we have s, = oo, which on using (3.23) and (3.24)
becomes

aC; = I(). (3.25)

Now in order to determine the constants a, s, C; and Cs, since we cannot satisfy pointwise stress conditions
at the boundaries, we assume that there are effective frictional coefficients u, and p, on the surface and on
the base of the cylindrical bin respectively, such that F; = Ny and F, = u,N, where

0=2n z=al3 27[,0g 186—51 /% 5/3
F = 0=— > —1
! / / fordzdl = =Sor O\ gy 719

0=2n z=al? 2 1
:/ / l, dzd0 = —%ﬁ—
0= z=0

b)
S

o~ (3.26)
- / / ro,drdo — — 28 p L
0 r= 3 Sl
0=2n —s51/3=5/3
367 pg g,
N, = -drdd = — _—
) = A /} ro.,dr = C3 (Sl )
Now from F| = y;N; we may deduce
18e—51/3 —5/3 503
I(00) = = % 2t (3.27)

(s1+2) 3
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and from F = u, N, we may obtain

54 Lenls?

C="-ml—1— 3.28
2 5 H (Sl +2) ) ( )
so that on substitution of C3 into (3.27) we find
18e 1135, °
1 =— "1 _(1- 3.29
(OO) (S] +2) ( :u1,u2), ( )
while on substitution of (3.28) and (3.29) into (3.25) we obtain
5 (11— mm)
=—————"= 3.30
T3y (3.30)
Next to determine C; from (3.22) and (3.29) respectively we have
s —s1/3.1/3
/ 1 e By dwm + Cy=— 3(e 1J/rs21) 7
S
0 : (3.31)

00 —51/3,75/3
/ e BoPdo+C; = 18e~1/3,

A W(l — i),

which by subtracting these two equations we may obtain the transcendental equation for s;, namely

18¢1/35, 3 3e1/3,/

= —-w/3,.-2/3 _
€ w do=——-——(1- +
/?1 (Sl +2) ( :uth) (

TQ{). (3.32)

On rewriting this equation as

i, =1 —iesl/3s5/3(s1 +2) /oc e P do — 3ﬂ
1H2 18 1 . (S1+2) )

so that the effective frictional coefficients p; and u, must satisfy 0 <y, < 1.

4. Numerical results

In this section we illustrate graphically the parametric solutions for both two and three dimensional
curved rat-holes. For the two-dimensional problem, on prescribing y; = u, = tan n/6 we obtain from (3.16)
s1 = 11.1453, and on letting £ = 1 we have from (3.12), (3.14) and (3.15) that C3 = 0.0001443, a = 0.1554
and C; = —2.5066. Fig. 3 shows the variation of the stresses, o, 7, 0, and o, with y/x*. It is clear from this
figure that at y/x*> = a which corresponds to the free surface of the rat-hole, the value of all stresses are
effectively zero, showing that the free surface condition is satisfied. Similarly, for the three-dimensional
problem, we prescribe p; = tann/4 and u, = tan /7, so that from (3.32) we obtain s; = 10.0126, and on
letting ¢ = 1 we have from (3.28), (3.30) and (3.31) that C5 = 0.00331, @ = 0.1792 and C; = —3.8631. Fig. 4
shows the variation of the stresses, g,, 6,, g, and o. with z/r*. Again, it is clear from this figure that at
z/r* = a which corresponds to the free surface of the rat-hole, the value of all stresses are effectively zero,
showing that the free surface condition is satisfied.
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Fig. 3. Variation of the stresses, (a) a;, (b) g, (¢) g, and (d) g, with y/x%.

5. Streamlines and failure lines

In this section we illustrate the exact solutions for the velocity fields for both plane and axially symmetric
flows, by showing the streamlines, which are the particle paths, and the directions of the minimum principal
stress oy For the special case of ¢ = 90°, the two families of slip-lines (characteristics) coalesce, and both
have the direction dy/dx = — cot in plane strain, or dz/dr = — coty in axially symmetry. The directions
of the principal stresses o; and oy are respectively determined by

d d

ay:tanx//, ay:—cott//, (5.1
and similarly for the axially symmetric case,

dz dz

Fi tany, i coti. (5.2)

These show that the direction of the characteristics coincide with the direction of oy;. This is because oy
has the larger magnitude, and therefore the material fails in the direction of ayy;. Further, by showing the
particle paths or the streamlines, it can be seen that for these flows the particles paths are in the direction
of oy;; which might be expected.
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5.1. Plane strain solution
From the solution (3.1); and (5.1) we may deduce
dy 3 dy
== . == —x(I(s) +2e/%712). 53
dr ~ 2x(I(s) + 2¢ 25 12) dx ch( (s) ) (5:3)
On using (3.1); we may deduce
dyp 2 e x? I(s) ds
a:@x(s (s) 4+ I(s) +2e72571/2) etk (5.4)

so that on substitution of (5.3),, respectively into (5.4) we may readily deduce two differential equations,
the second of which integrates, so that altogether we have
C3+ 42 (s7' U (s) + 1 (s) + 27257 12) (I (s) 4+ 2e7/257112) 5 J1(s) ds
(I(s) + 2625172 TR A

(5.5)
and

X
€=, (5.6)
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X

Fig. 5. Particle paths (—) and failure lines (- - -) for the plane strain solution with y(x,y) = xg(x/y'/?) as determined from (5.7).

where C denotes the constant of integration. We note that Eq. (5.5) appears not to be readily integrated
analytically, and we do not proceed further with this equation. The directions of oy (---) which are the
contours of (5.6) are shown in Fig. 5 with the streamlines (—) of the stream function z(x,y) = xg(x/y'/?)
where g(x/y'/?) is determined by (see Appendix A)

g(x/yl/2) =, (I(s) + ZB_S/ZS_I/Q) + Cys7 12, (5.7)

where in the figure the constants are taken as C; = 0 and C, = C; = C4 = 1. We observe that the particle
paths coincide with the directions of oy as expected.

5.2. Axially symmetric solution

From the solution (3.17),; and (5.2) we may deduce

dz G dy 3

dr— 32(I(s) +3eAs 2P dx G

2(I(s) + 3e™Ps73). (5.8)

On using (3.17); we may deduce

dz 3 _ /3 — 2 4I(s) ds
a:@ﬂ@s (s) + 1(s) + 3e 3573 f@rgs—za, (5.9)

so that on substitution of (5.8),, respectively into (5.9) we may readily deduce two differential equations,
the second of which integrates, so that altogether we have
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Fig. 6. Particle paths (—) and failure lines (- - -) for the axially symmetric solution with y(r,z) = r?g(r/z'/%) as determined from (5.12).

CS +9r* (257 (s) + I(s) + 3e™s723) (I(s) + 3e/s727) 5 S1(s) ds (5.10)
(I(s) + 3e=s/3s72/3) e A '
and
r
c=1s (5.11)

where C denotes the constant of integration. Again we note that Eq. (5.10) appears not to be readily in-
tegrated analytically, and we do not proceed further with this equation. The directions of oy (...) which
are the contours of (5.11) are shown in Fig. 6 with the streamlines (—) of the stream function
x(r,z) = r’g(r/z'/3) where g(r/z'/3) is determined by (see Appendix B)

g(r/z"?) = C3(1(s) + 3e™Ps723) + Cus 3, (5.12)

where in the figure the constants are taken as C; = 0 and C, = C3 = C4 = 1. We observe that the particle
paths coincide with the directions of oy as expected.

6. Conclusions

On assuming the Coulomb—Mohr yield condition and the non-dilatant double-shearing theory, new
exact analytical parametric solutions for both stress and velocity fields are obtained, for the special case of
the angle of internal friction ¢ = 90°. This major assumption is made primarily to facilitate an exact an-
alytical solution. However, as discussed at length in Section 1, it may be justified principally as follows.
Firstly, there exist many real materials for which the trigonometric sine of the angle of internal friction is
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close to unity. This occurs for ¢ in excess of 64° (namely sin 64° = 0.9). Secondly, it can be shown that for
¢ # n/2, the general Egs. (2.7) and (2.25) can be couched in a form (namely (2.11) and (2.29)) from which it
is apparent that generally a regular perturbation solution can be found as expansions in the variable
1 — sin ¢ (see Egs. (2.12) and (2.30)) with the leading term being precisely the solutions of (2.10) and (2.28)
respectively. Thus, the solutions derived here may be exploited as the initial approximation in a regular
perturbation series. Thirdly, we emphasize that we are not dealing with the notion of infinite friction for
which no relative slip between particles is possible, but rather we are dealing here with the physical notion
of slip occurring under zero normal and tangential tractions. Finally, we emphasize that for those problems
which may be solved numerically for the full range 0 < ¢ < /2, such as the problem of gravity flow from a
hopper (Hill and Cox, 2001b) the case ¢ = m/2 is seen to behave both qualitatively and quantitatively the
same as other values of ¢ such as ¢ = n/3 and n/6.

For the stress fields the solutions are exploited to determine the static stress distributions for highly
frictional granular solids for the two and three-dimensional rat-holes which have geometries as shown in
Figs. 1 and 2, and have free surfaces given respectively by y = ax? and z = ar?, where a denotes a positive
constant determined by (3.14) and (3.30) for two and three dimensions respectively. These solutions are
bona fide exact analytical solutions for a Coulomb—Mohr granular solid and satisfy the free surface con-
ditions on the curved upper portion, and effective frictional conditions on the boundaries. The solutions
presented here are the only known analytical solutions for curved rat-hole geometries. For the associated
velocity fields the particle paths, as determined from the streamlines of the stream functions for both plane
and axially symmetric flows, are graphically shown together with the failure lines which coincide with the
direction of the minimum principal stress oyyp. It is seen that the particle paths coincide with the failure lines.
This is because based on the assumption of ¢ = 7/2 the maximum principal stress o7 becomes zero, and o
has the larger magnitude and therefore the material fails in this direction.
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Appendix A. Derivation of the exact parametric solutions (3.1) and (5.7) of Eqs. (2.10) and (2.18)

In this appendix we give a brief derivation of the exact parametric solutions (3.1) and (5.7) of Egs. (2.10)
and (2.18). Eq. (2.10) gives rise to similarity solutions with functional form

hix,y) = xCVf (/7). (A1)

For general « the resulting non-linear ordinary differential equation for f appears not to admit a simple
analytical solution. However, the cases o = 1 and o« = 2 admit exact solutions in parametric form. The
special case o = 1 gives rise to the solution of the form A(x,y) = f(x/y) which has been exploited to
determine analytical solutions for the three problems comprising flow from a two-dimensional converg-
ing wedge shaped hopper (Hill and Cox, 2001b), secondly the stress distribution beneath a two-dimensional
wedge shaped sand-pile (Hill and Cox, 2002b) and finally the stress distribution within a two-dimensional
wedge rat-hole (Cox et al., submitted for publication).
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For the special case o = 2, the solution (A.1) becomes

h(x,y) = xf (), (A2)
where ¢ = x/y!'/2. On substitution of (A.2) into (2.10) we may obtain

1L &r©

SO+ 2+ — 55 =0 (A.3)
4(1+87)/2)

where the prime here denotes differentiation with respect to &. This equation remains invariant under the

stretching transformation &, = e‘¢, f; = e %/, and therefore we may introduce the new variable xk = &*f, so

that upon making the Euler transformation ¢ = In ¢ and p = k, we obtain

d
(K+2)2pd_]f_zp{(x+2>2+2(x+ 1)} = —8k(x+ 1). (A4)
Now we introduce p = 2k + 7 into (A.4) to obtain
d
(k+2)* (2K + 1) = dn(xc + 1)d—:, (A.5)
and upon substituting k¥ + 2 = 1/w into (A.5), we obtain
d
Ao — 1)d—‘:7’:2+ (n— 4)o. (A.6)
On making the successive substitutions @ = v+ 1 and v = m + /4 we may deduce the Bernouli equation
—am+ )Y a4 (A7)
dm ’ '

which on solving in the usual way gives

1 e”
—=——1I(m), A8
no202m+1)"? (m) (A.8)
where
e*ﬂl ;

where C} denotes the arbitrary constant.
On retracing the above transformations we find

(I(m) + 2mI(m) + " (2m + 1)1/2)
(I(m) + mI(m) +e"(2m +1)"?/2)’

5 2me " (2m + 1)'21(m) + e 2"(2m + 1) — 2(2m + 1)I*(m)
1(m) (2 (m) + 2mI(m) + e~ (2m + 1)"/?)

p:

b

and from d¢ = dx/p and ¢ = In ¢ we may deduce
- 1(m)
(2m + 1) <2I(m) + 2ml(m) + e (2m + 1)‘/2)

dm + C;, (A.10)
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where C; denotes a further arbitrary constant. Next we introduce s = 2m + 1, thus (A.10) becomes
1 I(s)

2 /s([(s) + sI(s) + 2e—3/251/2)

ds,

:l /@ ! ds
2] s2 (sU(s) +I(s) + 2e5/2571/2)
1 [d(s7(s) + 1(s) + 2e/257172)
T2 / (s (s) + I(s) + 2e 25 172)
=InCy(s™'I(s) + I(s) + 2e 257 1/2) /2,
where [(s) is defined by

I(s) = / e 2w dw + C, (A.11)
and C; and C, denote new arbitrary constants. Thus from ¢ = In ¢ where ¢ = x/y'/?> we may obtain
x 2 1/2—
= Co(s™'I(s) + I(s) + 2627 12) 712, (A.12)

and we rewrite x in terms of the parameter s as

J 2e-5/241/2
oo g Wl +2eP) (A.13)
(I(s) + sI(s) + 2e~5/251/2)
Thus from (A.2) where f = x/& we find that the exact analytical parametric solution of (2.10) for the
special case of o = 2 becomes

coty = — 5 x(I(s) +2e 257112, (A.14)

—X
2
C2

In order to determine ¢, from (A.11) and (A.14) we may deduce

1 2 2
v, =— {s3/ze"/2xsx — = (I(s) +2e™/%5712 },
[144x2(I(s) +2e25712)2/Ci] L G g\t ) (A.15)
1 2 '
W= — —s’3/ze’5/2xsy,
g [+ 4x2(I(s) 4 2e~5/2571/2)* /C4] C3
where xs, and xs, are derived by differentiation of (A.12) with respect to x and y respectively
2
Xsy = ZIS—) (s7'I(s) +I(s) + 2e’S/2s’1/2),
N
g (A.16)
_
¥y =T xI(s)’
and on substitution of (A.15) an .16) into (2.8) and simplifying we may deduce
d bstituti f (A.15) and (A.16) into (2.8) and simplifyi ded
C* + 4x? (I(s) + 2e_s/zs_l/2)2
__rg [ 2 ] ) (A.17)

4G 1(s)

Next for the velocity profile, we assume y(x,y) = xg(¢) and on substitution into (2.18) we may deduce

1 1 5/(9)g(¢) =0, (A.18)

" / 1 2 —_—— _l s
ig (é)+g(f){2+2€f(5) (1_’_52}‘(5)/2)} 25 (1+62f(£)/2)
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where the prime here denotes differentiation with respect to £. Eq. (A.18) is a homogeneous linear equation
of the second order of the form

F2(9)g" (&) + £1(9)g (&) + /0(¢)g(£) =0,

where the general solution is given by

e F
g=280 (Cl +02/?d5>7 (A.19)

where ¢ and ¢, denote arbitrary constants, F = f fi/frdéand gy = go(é) is a non-trivial particular solution
which for Eq. (A.18) we may use go(&) = /(&) where f(¢) is given by x/&. In order to determine F we have

from
2 ¢f(9)
/5 €+ i+ ézf( 8/2) dé. (A.20)

Now we consider the second integral of (A.20). From f(¢) = x/& where ¢ and k are determined by (A.12)
and (A.13), we obtain

L A (P K
2/ 1+ / a0t (A21)

In terms of the parameter s we may deduce

K ge_ L[ U2
/EEIBM /(U+d®+%vw@“7
= /d( (s) + sI(s) + 2e™*/251/2) o
(I( ) + SI(S) + 2e*S/ZS1/2) )

:__mu)+m@+kﬂw@.

On substitution of (A.12) and (A.22) into (A.20) we deduce
2
F=1In G - (A.23)
(I(s) + s(s) + 2e5/251/2)"/

and from go(¢) = (&) = k/&, we have

80= — 2 1(5) + 2675,
C2
therefore
- G 1
/—df / 52) 5 ds. (A.24)
5 8 ) S (5120 (s) + 2e-12)
Now we may rewrite the right hand side of the integral of (A.24) in the form
C [1(s) 1 G [d(s), 1

=2 =2 A2
8 ) SRRt 2oy 4 ) @) 4a0+c (423

where a(s) = s'/2I(s) + 2e7*/> and C* denotes arbitrary constant. Therefore on substitution of (A.25) into
(A.24) we may deduce
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Table 2
Tabulated comparison of the parametric solutions (A.1) of (2.10) and (2.18) for « = 1 and « = 2 where here r = (x> + yz)l/ 2
a=1 =2
h(x,y) = f(x/y) h(x,y) = xf(x/y'?)
coty = _Ié_s) coty = —Zx(I(s) + 2e7/%s7172)
2 2
_x(I(s) + 2571/2¢79/2) B X2 (s7H(s) 4+ I(s) +2e2s71/2)
Y= y= e
I(s) = [P0 2e P do + C I(s) = [fo™? e dw + C;
_pgr sT12e2[C2 + 1P(s))] = 7&[02‘ +4x2(I(s) + 2e7/257 /7))
4 (C2+ 2512 es2 4+ 1(s)P) 2 4G 1(s)
1(x,y) = g(x/y) 2(x,y) = xg(x/y'?)
g(x/y) = Gil(s) + Cy g(x/y'?) = C3(I(s) 4+ 2e7*/2571/2) + Cys™'/?
-F 3
e C 1
/_2dé =-2 0 nt6
P 4 ("PI(s) + 2077

where C denotes further arbitrary constant. Hence, from (A.19) the general solution of (A.18) is given by
g(&) = Gs(I(s) +2e57'%) + Cas™'12, (A.26)

where C; and C, denote arbitrary constants.
In order to make a comparison with the known exact parametric solutions for « = 1 we present both
parametric solutions for « = 1 and o = 2 for both stress and velocity profiles in Table 2.

Appendix B. Derivation of the exact parametric solutions (3.17) and (5.12) of Eqgs. (2.28) and (2.36)

In this appendix we give a brief derivation of the exact parametric solutions (3.17) and (5.12) of Egs.
(2.28) and (2.36). Eq. (2.28) gives rise to similarity solutions with functional form

h(r,z) = r“’”f(r/zl/“). (B.1)

Again for general « the resulting non-linear ordinary differential equation for f appears not to admit a
simple analytical solution. However, the cases « = 1 and o = 3 admit exact solution in parametric form.
The special case of o = 1 gives rise to the solution of the form A(r,z) = f(r/z) which has been exploited to
determine analytical solution for the stress distribution within a three-dimensional conical rat-hole (Cox
et al., submitted for publication).

For the special case o = 3 the solution (B.1) becomes

h(r,z) = (£), (B.2)
where ¢ = r/z'/. On substitution of (B.2) into (2.28) we may deduce
(1-27(9)/3) } o B3)
(1+&7@3) )

where the prime here denotes differentiation with respect to £. This equation remains invariant under the
stretching transformation &, = e°¢, f; = e >f, and therefore we introduce the new variable x = & f, so that
upon making the Euler transformation z = In ¢, and p = k, we obtain

&) +f’(£){3 28
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(K+3)2p%—3p{(lc+3)2+3(lc+ 1)} = —27k(k + 1). (B.4)

Now on introducing p = 3k + 5 into (B.4) we obtain

d
(1 + 3)* 3k + 1) = In(c+ 1)d—’;, (B.5)
and upon introducing x + 3 = 1/ into (B.5), we have
92w — l)i—(;l) =3+(n-9o. (B.6)

On making the successive substitution w = (v+1)/2 and v =m+n/9 we may deduce the Bernouli
equation

f(9m+3)§—l:9nm+n2, (B.7)
which on solving in the usual way gives

1 e”

— = 71 m s B.S

n3Gm+ 1) m) (B8)
where

e*ln
I(m :/7dm—|—C*7 B.9
(m) (3m +1)* : (B2)

where C} denotes the arbitrary constant.
On retracing the above transformations we find

~ (I(m) +3mI(m) +e"(Bm+ 1))
(I(m) + mI(m) +e"(3m +1)3/3)’
J3me " (3m + 1) 1(m) + 2¢7(3m + 1)** — 3(3m + 1)1*(m)
I(m)(31(m) + 3mI(m) + e (3m 4 1)'?)
and from df = dx/p and ¢ = In ¢ we may deduce
. /”’ 21(m)
(3m+ 1) <3I(m) + 3ml(m) + e (3m + 1)1/3)

p:

)

dm + C}, (B.10)

where C; denotes a further arbitrary constant. Next we introduce s = 3m + 1, thus (B.10) becomes

ds,

. 2 / I(s)
3 ) s(2(s) + sI(s) + 3e—/3s1/3)
e | -
s2 (257U (s) + I(s) + 3e~s/3s72/3) 7
1 [d(2s7U(s) + I(s) + 3e~/3s72/3)
T3 / (257 I(s) + I(s) + 3e~5/3s2/3)
=InCy(25 ' I(s) + I(s) + 3e*‘“/3s*2/3)_1/3,

where /(s) is defined by

I(s) = / B Pdw + ¢y, (B.11)
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and C; and C, denote new arbitrary constants. Thus from ¢ = In ¢ where ¢ = r/zl/ 3 we may obtain
r _ /3 —2/3—
S = Ca(2s U (s) + I(s) + 33572371, (B.12)

and we rewrite x in terms of the parameter s as

= (SI(S) + 3e*“/3sl/3)
K= 3 00 T I (s) T 3o s -

Thus from (B.2) where f = k/ & we find that the exact analytical parametric solution of (2.28) for the
special case of o = 3 becomes

coty = f%rz (I(s) +3e/3s723). (B.14)
2
In order to determine ¢, from (B.11) and (B.14) we may deduce
1 6 §5es/3,2 6 323}
L= — e~ 32, — —r(I(s) + 3e= s~ ,
v [1+94(1(s) + 36*5/3s*2/3)2/C§] { G G (76s) )
1 6 (B.15)
Y. = — . —3s’5/3e"v/3r2sz,
[14974(1(s) + 3e=/3s2/3)"/C5] C3
where 7%s, and r%s. are derived by differentiation of (B.12) with respect to » and z respectively
3 2
s, == L (2571 (s) + I(s) + 3e13s7/3),
2 I(s)
(B.16)
co§?
s, =2
: 2 rl(s)’
and on substitution of (B.15) and (B.16) into (2.26) and simplifying we may deduce
_6/3.-2/3\2
pg [SHOIE) + e (B.17)
1 12¢3 rl(s) ' '
Next for the velocity profile, we assume y(r,z) = ’g(£) and on substitution into (2.36) we may deduce
(O + (134 3 EM D 2 (058 = 0 (B.18)
3 (I+E73) f 37 (1+E1(9)/3) o '

where the prime denotes differentiation with respect to £. Eq. (B.18) is also a homogeneous linear equation
of the second order where the general solution can be found from the formula (A.19). Again we may use
20(&) = f(&) where f(&) = k/&. In order to determine F we have from

21
/é dé++ / ENTE )/3)dé. (B.19)

Now we consider the second integral of (B.19). From f (&) = k/ & where ¢ and « are determined by (B.12)
and (B.13), we obtain

1/( fﬁff &)/3) dc= /5 (8.20)
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In terms of the parameter s we may deduce
1 I 3 —s/3.—2/3
/—" dgz__/ Uls) +3e7s7) 0
E(3+ k) 3 ) (2(s) + sI(s) + 3e—3/3s1/3)
_ 1 /d(Z[(s) +sI(s) + 3e™*/351/3) (B.21)
3 ) (2(s) +sI(s) 4+ 3e/3s1/3) 7

_ ! In(21(s) + sI(s) 4 3e*/3s'/3).

3
On substitution of (B.12) and (B.21) into (B.19) we deduce
3
F=In C3s — (B.22)
(21(s) + sI(s) + 3e-5/3s1/3)Y
and from gy(&) = (&) = K/€3 we have
g0 = — 25 (1(5) + 3e~52P),
&
therefore
- 26y [1 1
/e—zdé _26G (1) ds. (B.23)
£ 27 ) s (s2B1(s) + 3e=/3)
Now we may rewrite the right hand side of the integral of (B.23) in the form
2C3 [ I(s) 1 Cy [d(s) c o1
Z= [ =2 =—-22__ 4 B.24
27 sl/3 (S2/3[(S) +367S/3)2 S 9 a2<s) s 9 a(s) +C ; ( )

where a(s) = s*/3I(s) + 3e™/> and C* denotes arbitrary constant. Therefore on substitution of (B.24) into
(B.23) we may deduce

e’ (& 1
2 _de=-=2 C
/ 2770 i raem O
where C denotes further arbitrary constant. Hence, from (A.19) the general solution of (B.18) is given by
(&) = Gs(I(s) + 3¢ s727) + Cas™P, (B.25)

where C; and C,; denote arbitrary constant.

izzii:l;ted comparison of the parametric solutions (B.1) of (2.28) and (2.36) for & = 1 and o = 3 where here R = (#* +zz)]/ 2
o=1 =3
h(r,2) = [(r/2) h(r,z) =rf(r/z'7)
coty = 7% coty = 7cigr2(1(s) +3e7 35723
_r(I(s) 4357 P25 (s) + 1(s) 4 3e s
(& G

I(s) = [fo el dw + C
_pgR  sPel[C +P(s)]

6 {C+ B Be P+ 1(s)P)
1(r,2) = g(r/2)
g(r/z) = C3I(S) + C4

I(s) = [0 e dow+ C
pg [CS+9r4(1(s) + 3 52)]
12C3 rl(s)

x(r,2) = rg(r/z'?)
g(r/2'3) = C3(I(s) + 3e~53s723) + Cys72

q==
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In order to make a comparison with the known exact parametric solutions for « = 1 we present both
parametric solutions for « = 1 and « = 3 for both stress and velocity profiles in Table 3.

References

Australian Standard, 1996. Loads on bulk solids containers. Standards Association of Australia. ISBN 0733707335, AS 3774, p. 23.

Bradley, N.J., 1991. Gravity Flows of Granular Materials. Ph.D. Thesis, University of Nottingham.

Cox, G.M., Hill, J.M., 2003. Some exact mathematical solutions for granular stock piles and granular flow in hoppers. Mathematics
and Mechanics of Solids 8, 21-50.

Cox, G.M., Hill, J.M., Thamwattana, N., submitted for publication. An analytical solution for a sloping rat-hole in an highly frictional
granular solid. Proc. Roy. Soc. Lond. A.

Hill, J.M., Cox, G.M., 2000. Cylindrical cavities and classical rat-hole theory occurring in bulk materials. Int. J. Numer. Anal. Meth.
Geomech. 24, 971-990.

Hill, .M., Cox, G.M., 2001a. Stress profiles for tapered cylindrical cavities in granular media. Int. J. Solids Struct. 38, 3795-3811.

Hill, J.M., Cox, G.M., 2001b. An exact parametric solution for granular flow in a converging wedge. Z. Angew. Math. Physik (ZAMP)
52, 657-668.

Hill, .M., Cox, G.M., 2002a. Rat-hole stress profiles for shear-index granular materials. Acta Mech. 155, 157-172.

Hill, J.M., Cox, G.M., 2002b. On the problem of the determination of force distributions in granular heaps using continuum theory.
Q. J. Mech. Appl. Math. 55, 655-668.

Jenike, A.W., 1962a. Gravity flow of bulk solids. Utah Engineering Experiment Station. Bulletin no. 108.

Jenike, A.W., 1962b. Gravity flow of solids. Trans. Inst. Chem. Eng. 40, 264-471.

Jenike, A.W., 1964. Steady gravity flow of frictional-cohesive solids in converging channels. J. Appl. Mech. 31, 5-11.

Jenike, A.W., 1965. Gravity flow of frictional-cohesive solids—convergence to radial stress fields. J. Appl. Mech. 32, 205-207.

Jenike, A.W., Yen, B.C., 1962a. Slope stability in axially symmetry. Utah Engineering Experiment Station. Bulletin no. 115.

Jenike, A.W., Yen, B.C., 1962b. Slope stability in axially symmetry. In: Proc. Fifth Symposium on Rock Mechanics, May 1962,
University of Minnesota. Pergamon Press, New York, pp. 689-711.

Johanson, J.R., 1964. Stress and velocity fields in the gravity flow of bulk solids. J. Appl. Mech. 31, 499-506.

Lynch, K.M., Mason, M.T., 1993. Pulling by pushing, slip with infinite friction, and perfectly rough surfaces. In: Int. Conf. on
Robotics and Automation, vol. 1, Atlanta, 2-6 May 1993. IEEE, pp. 745-751.

Lynch, K.M., Mason, M.T., 1995. Pulling by pushing, slip with infinite friction, and perfectly rough surfaces. Int. Rob. Res. 14,
174-183.

Perkins, S.W., 1994. Non-linear limit analysis for the bearing capacity of highly frictional soils. In: 2nd Congress on Computing in
Civil Engineering, vol. 1, Atlanta, 4 June 1995. ASCE, pp. 629-636.

Perkins, S.W., 1995. Bearing capacity of highly frictional material. ASTM Geotech. Testing J. 18, 450-462.

Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 12, 337-351.

Spencer, A.J.M., 1982. Deformation of ideal granular materials. In: Hopkin, H.G., Sewell, M.J. (Eds.), Mechanics of Solids. Pergamon
Press, Oxford, pp. 607-652.

Spencer, A.J.M., Bradley, N.J., 1992. Gravity flow of a granular material in compression between vertical walls and through a tapering
vertical channel. Q. J. Mech. Appl. Math. 45, 733-746.

Spencer, A.J.M., Bradley, N.J., 1996. Gravity flow of granular materials in converging wedges and cones. In: Markov, K.Z. (Ed.),
Proc. 8th Int. Sym. Continuum Models and Discrete Systems. World Scientific, Singapore, pp. 581-590.

Spencer, A.J.M., Bradley, N.J., 2002. Gravity flow of granular materials in contracting cylinders and tapered tubes. Int. J. Eng. Sci. 40,
1529-1552.

Sture, S., 1999. Constitutive issues in soil liquefaction. In: Lade, P.V., Yamamuro, J.A. (Eds.), Physics and Mechanics of Soil
Liquefaction. Balkema, Rotterdam, pp. 133-143.

Thamwattana, N., Hill, J.M., 2003. Analytical stress and velocity fields for highly frictional granular materials. Acta Mech. 164.



	Analytical solutions for tapering quadratic and cubic rat-holes in highly frictional granular solids
	Introduction
	Basic equations for two and three dimensions
	Two-dimensional plane strain equations
	Three-dimensional axially symmetric equations

	The rat-hole problems
	Two-dimensional quadratic rat-holes
	Three-dimensional cubic rat-holes

	Numerical results
	Streamlines and failure lines
	Plane strain solution
	Axially symmetric solution

	Conclusions
	Acknowledgements
	Derivation of the exact parametric solutions (3.1) and (5.7) of Eqs. (2.10) and (2.18)
	Derivation of the exact parametric solutions (3.17) and (5.12) of Eqs. (2.28) and (2.36)
	References


