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Abstract

New exact analytical solutions are presented for both stress and velocity fields for a Coulomb–Mohr granular solid

assuming non-dilatant double-shearing theory. The solutions determined apply to highly frictional materials for which

the angle of internal friction / is assumed equal to 90�. This major assumption is made primarily to facilitate exact

analytical solutions, and it is discussed at length in the Introduction, both in the context of real materials which exhibit

large angles of internal friction, and in the context of using the solutions derived here as the leading term in a regular

perturbation solution involving powers of 1� sin/. The analytical velocity fields so obtained are illustrated graphically

by showing the direction of the principal stress as compared to the streamlines. The stress solutions are also exploited to

determine the static stress distribution for a granular material contained within vertical boundaries and a horizontal

base, which is assumed to have an infinitesimal central outlet through which material flows until a rat-hole of parabolic

or cubic profile is obtained, and no further flow takes place. A rat-hole is a stable structure that may form in storage

hoppers and stock-piles, preventing any further flow of material. Here we consider the important problems of two-

dimensional parabolic rat-holes of profile y ¼ ax2, and three-dimensional cubic rat-holes of profile z ¼ ar3, which are

both physically realistic in practice. Analytical solutions are presented for both two and three-dimensional rat-holes for

the case of a highly frictional granular solid, which is stored at rest between vertical walls and a horizontal rigid plane,

and which has an infinitesimal central outlet. These solutions are bona fide exact solutions of the governing equations

for a Coulomb–Mohr granular solid, and satisfy exactly the free surface condition along the rat-hole surface, but

approximate frictional conditions along the containing boundaries. The analytical solutions presented here constitute

the only known solutions for any realistic rat-hole geometry, other than the classical solution which applies to a

perfectly vertical cylindrical cavity.
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1. Introduction

A rat-hole is a stable two-dimensional slot or channel, or three-dimensional cylindrical cavity, that may

form in storage hoppers and stockpiles and prevent further material falling through the outlet. It is not a
desirable phenomena for any industry because it disrupts the flow of the material. Removing a stable rat-

hole from a stockpile or hopper is an additional manual procedure that costs both time and money, and

which may be dangerous, since people have died from attempting to remove stable rat-holes formed in

grain silos. Very little theoretical information is known about the formation of rat-holes, and whether an

existing formed rat-hole is stable or unstable. These are important issues, that have yet to be properly

addressed in the literature. In this paper we present exact analytical solutions for both the two and three-

dimensional tapering rat-holes depicted in Figs. 1 and 2. We note that such rat-holes have not been studied

previously, and our solutions constitute the only known analytical solutions for these physically realistic
situations. These exact solutions for the non-dilatant double-shearing theory and the Coulomb–Mohr yield

condition, are obtained by assuming that the angle of internal friction / ¼ 90�. Physically, this assumption

might not be precisely realizable, but mathematically, the solutions presented provide the limiting behavior

for real materials which might be termed ‘‘highly frictional granular materials’’, which do indeed exist as

evidenced by the data in Table 1. This assumption is discussed at length subsequently, but here we simply

note that for those problems which may be solved numerically for the full range 06/6 p=2, such as the

problem of gravity flow from a hopper (Hill and Cox, 2001b) the case / ¼ p=2 is seen to behave both

qualitatively and quantitatively the same as other values of / such as / ¼ p=3 and p=6.
Jenike (1962a,b) and Jenike and Yen (1962a,b) attempt to establish a theory of rat-hole stability, usually

termed classical rat-hole theory. However, Hill and Cox (2000) re-examine this theory and show that some

of the assumptions of the so-called ‘‘Jenike stable rat-hole equation’’ are invalid. Practising engineers be-

lieve that classical rat-hole theory does not reflect actual material behavior. One of the reasons that classical

rat-hole theory is not well accepted is because a rat-hole is assumed to be a perfectly vertical cylindrical

cavity with stresses within the rat-hole which are independent of height. In reality, rat-holes tend to exhibit
Fig. 1. Coordinates for the two-dimensional quadratic rat-hole showing stresses on the horizontal and vertical boundaries.



Fig. 2. (a) Three-dimensional visualisation of the cubic rat-hole occurring within a cylindrical bin. (b) Coordinates for the three-

dimensional cubical rat-hole showing stresses on the base and on the cylindrical surface of the bin.

Table 1

Measured values of /e and sin/e for certain granular materials, where /e is the effective angle of internal friction

Granular material Measured of /e Sin/e

Coal 69.82, 73.24, 76.62 0.938, 0.957, 0.973

Alumina filter cake 70.14 0.94

Waste rock 76.91 0.974

Silica 78.34 0.979
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some variation with height, and we refer the reader to Hill and Cox (2001a) for details. Here, we are

primarily concerned with the determination of the stress profile within an existing defined rat-hole. Hill and

Cox (2001a), have presented analytical expressions for the stress profile for slightly tapered cylindrical

cavities. Approximate stress and velocity solutions for gravity flow within tapering channels and tubes have

been given by Spencer and Bradley (1992, 2002). Hill and Cox (2002a) have extended existing rat-hole

theory to include granular materials which satisfy the more general shear-index yield condition. Recently,

Cox et al. (submitted for publication) has determined analytical exact solutions for two and three-

dimensional sloping rat-holes in highly frictional granular solids. Here, we solve the corresponding prob-
lems, but for rat-holes of parabolic and cubic profiles as indicated in Figs. 1 and 2.

Jenike (1962a, 1964, 1965) and Johanson (1964) examine radial flow solutions for which the equilibrium

equations and the Coulomb–Mohr yield condition reduce to give two highly non-linear coupled ordinary

differential equations for the determination of the stress field. These solutions have been re-examined by

Bradley (1991) and Spencer and Bradley (1996). In general, the two highly non-linear coupled ordinary

differential equations can only be solved numerically. However, based on the assumption that the angle of

internal friction / ¼ 90�, or b ¼ 1 where b ¼ sin/, an exact parametric solution for flow from a two-

dimensional converging wedge shaped hopper has been derived analytically (Hill and Cox, 2001b). Fur-
thermore, essentially the same exact parametric solution has been exploited for the stress distribution



5926 N. Thamwattana, J.M. Hill / International Journal of Solids and Structures 40 (2003) 5923–5948
beneath a two-dimensional wedge shaped sand-pile (Hill and Cox, 2002b). This solution is the first exact

solution of these highly non-linear coupled ordinary differential equations involving two arbitrary con-

stants.

Another exact solution of these equations is obtained from the special case b ¼ �1 and is given in Cox
and Hill (2003). Although this special case is completely non-physical, the special case of b ¼ 1 does give

rise to an idealized mathematical theory, applying to those granular materials which might be termed

highly frictional, such as those shown in Table 1. We comment that the data given in Table 1 refers to the

effective angle of internal friction /e which is approximately between 0� and 10� in excess of the actual

angle of internal friction, noting that for a cohesionless material, the effective angle of internal friction /e

coincides with the angle of internal friction /. In addition, the major issue here is not the actual magnitude

of the angle of internal friction, but rather the proximity of the sine of the angle in relation to unity, noting

that sin 64� ¼ 0:9. However, apart from Sture (1999) who reports angles of internal friction in the range of
70�–75� for materials under a confining pressure, there does not generally seem to exist any extensive

published data for materials possessing effective angles of internal friction comparable to the high values

reported in Table 1. We find, for example, from the Australian Standard (1996, p. 23) that black and

brown coal, and from Perkins (1994, 1995) that certain highly angular dense soils, all exhibit relatively high

values of the effective angle of internal friction in the range of 60�–65�, and sin 60� ¼ 0:8660 and

sin 65� ¼ 0:9063.
For the mathematical solutions arising from the assumption / ¼ p=2, we make the following comments.

Firstly, we observe from the Coulomb–Mohr yield condition jsj6 c� r tan/, that while tan/ tends to
infinity as / tends to p=2, along the yield surface the normal component of traction r tends to zero in such a

way that the product r tan/ remains finite. Physically, this is equivalent to slip occurring along an infinite

friction surface (see Lynch and Mason, 1993, 1995) with both zero normal and tangential shearing and

through every point, there is a traction free surface. We emphasize that the assumption of / ¼ p=2 does not
correspond to a perfectly rough material where infinite friction prohibits any relative movement of con-

tacting particles. Secondly, for the special case of / ¼ p=2 the two families of generally distinct slip-planes

coincide (see Section 5). Lastly, we also observe that as / tends to p=2, the maximum principal stress (given

by rI ¼ �p þ q where p and q are the stress invariants defined by (2.3) or (2.21)) tends to zero. Accordingly,
the material fails in the direction of rIII ðrIII ¼ �p � qÞ, which has the larger magnitude (see also Section 5).

Further, on rewriting the governing equations in the forms given by (2.11) and (2.29) for two and three

dimensions, it is evident that approximate perturbation solutions involving powers of 1� sin/, as given in

(2.12) and (2.30) respectively, are possible. Such perturbation schemes would give rise to approximate

analytical solutions for materials possessing angles of internal friction / such that 1� sin/ approaches

zero. Thus, it is clear from (2.11) and (2.29) that the exact parametric solutions presented here are precisely

the leading term of the respective perturbation schemes.

In the recent paper of Cox et al. (submitted for publication), the equilibrium equations, the Coulomb–
Mohr yield condition and the assumption of the angle of internal friction / ¼ p=2, reduce to give two novel

non-linear partial differential equations for the determination of the stress field for the two situations of

plane strain deformations and for axially symmetric deformations (see Eqs. (2.10) and (2.28)). By solving

these equations, we may derive the exact analytical solutions for the stress distribution within a wedge and

cone shaped rat-holes (Cox et al., submitted for publication). In addition, these equations give rise to a

number of solution types which are examined in Thamwattana and Hill (2003). In particular, one of the

solution types corresponds to the solutions which have been used in Hill and Cox (2001b, 2002b), Cox and

Hill (2003) and Cox et al. (submitted for publication). In this paper we examine further special exact so-
lutions of these novel equations which may be used to determine stress distributions for physically more

realistic rat-hole geometries. Here, we assume rat-hole geometries comprising an upper perfect curved

portion, resting on a rigid base with an infinitesimal central outlet as indicated in Figs. 1 and 2 for two and

three dimensions respectively, and contained within vertical boundaries as shown.
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In the following section, we briefly state the basic equations of non-dilatant double-shearing theory of

granular flow for both plane and axially symmetric flows. On assuming an angle of internal friction

/ ¼ p=2 ðb ¼ 1Þ, we may deduce the basic governing partial differential equations for the stress and velocity

profiles for both two and three dimensions. In Section 3, the exact analytical solutions of the governing
equations for both plane and axially symmetries as determined respectively in Appendices A and B, are

used to determine the stress profiles in rat-holes of parabolic and cubical profiles. Numerical stress profiles

are shown graphically in Section 4. In the final section, the solutions for the velocity fields are illustrated

graphically by showing the streamlines which represent the path of the flows together with the principal

stress directions.
2. Basic equations for two and three dimensions

In the following two subsections we state briefly the basic equations of the continuum mechanical theory

of granular material for quasi-static steady flow conforming to the Coulomb–Mohr yield condition for two

and three dimensions.

2.1. Two-dimensional plane strain equations

In rectangular Cartesian coordinates ðx; y; zÞ we consider the flow in the ðx; yÞ plane, with y-axis vertically
upwards. For steady quasi-static flows, the inertia terms may be neglected and therefore for plane strain

conditions, the non-zero Cauchy stress components satisfy the equilibrium equations
orxx

ox
þ orxy

oy
¼ 0;

orxy

ox
þ oryy

oy
¼ qg; ð2:1Þ
where q denotes the bulk density, assumed constant, g is acceleration due to gravity and rxx, rxy and ryy

denote the usual in-plane Cauchy stress components which are assumed to be positive in tension. These

components can be expressed in standard form
rxx ¼ �p þ q cos 2w; ryy ¼ �p � q cos 2w; rxy ¼ q sin 2w; ð2:2Þ

where p and q are the stress invariants defined by
p ¼ �1
2
ðrxx þ ryyÞ; q ¼ 1

2
fðrxx � ryyÞ2 þ 4r2

xyg
1=2

; ð2:3Þ
while the stress angle w, which is the angle between the maximum principal stress and the x-axis, is given by
tan 2w ¼ 2rxy

ðrxx � ryyÞ
: ð2:4Þ
The stress relations are completed with the assumption of the Coulomb–Mohr yield condition
q ¼ p sin/þ c cos/; ð2:5Þ

where / denotes the angle of internal friction and c denotes the cohesion, both of which are assumed to be

constants. The above equations are generally accepted as a reasonable basis for the determination of the

stress components.

On substitution of (2.2) and (2.5) into (2.1), we obtain
qx ¼
b

b2 � 1
qgb sin 2w
�

þ 2q½wx sin 2w� wyðbþ cos 2wÞ�
�
;

qy ¼
b

b2 � 1
qgð1
�

� b cos 2wÞ þ 2q½wxðb� cos 2wÞ � wy sin 2w�
�
;

ð2:6Þ
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where b ¼ sin/. From (2.6) it is clear that b ¼ �1 give rise to the special cases. We rewrite (2.6) in the form
ðb� 1Þðqx coswþ qy sinwÞ ¼ qgb sinwþ 2bqðwx sinw� wy coswÞ;

ðbþ 1Þðqx sinw� qy coswÞ ¼ qgb cosw� 2bqðwx coswþ wy sinwÞ;
ð2:7Þ
and in particular when b ¼ 1 it follows from (2.7)1 that q is given explicitly by
q ¼ � qg
2

1

ðwx � wy cotwÞ
; ð2:8Þ
while from (2.7)2 for b ¼ 1 we have
2ðq sinwÞx ¼ qg coswþ 2ðq coswÞy ; ð2:9Þ
and on substitution of (2.8) into (2.9) and simplifying, we obtain the novel non-linear partial differential
equation
hxx � 2hhxy þ h2hyy ¼ 0; ð2:10Þ

where hðx; yÞ ¼ cotw. We observe that in the other special case of b ¼ �1, we may deduce the same Eq.
(2.10) in a similar manner but where hðx; yÞ ¼ � tanw. Since this case is non-physical, it will not be dis-

cussed here. We note that Eqs. (2.7) can be rewritten as
qg sinwþ 2qðwx sinw� wy coswÞ ¼ ð1� bÞ½qg sinw� qx cosw� qy sinwþ 2qðwx sinw� wy coswÞ�;

qg cosw� 2ðq sinwÞx þ 2ðq coswÞy ¼ ð1� bÞ½qg cosw� qx sinwþ qy cosw� 2qðwx coswþ wy sinwÞ�;
ð2:11Þ
which it is clear that these equations admit perturbation solutions of the form
w ¼ w0ðx; yÞ þ �w1ðx; yÞ þOð�2Þ; q ¼ q0ðx; yÞ þ �q1ðx; yÞ þOð�2Þ; ð2:12Þ
where � ¼ 1� b, with (2.12) satisfying (2.8) and (2.9) to leading order.

Next for the associated velocity profile, here we assume the non-dilatant double-shearing theory

(Spencer, 1964, 1982). For steady flow, the non-zero velocity components uðx; yÞ and vðx; yÞ in the x and y
directions respectively, are assumed to satisfy the equations
ou
ox

þ ov
oy

¼ 0; ð2:13Þ

ou
oy

�
þ ov
ox

�
cos 2w� ou

ox

�
� ov
oy

�
sin 2wþ sin/

ou
oy

�
� ov
ox

þ 2X

�
¼ 0; ð2:14Þ
where for steady flow X is defined by
X ¼ u
ow
ox

þ v
ow
oy

:

Next we introduce a stream function vðx; yÞ defined by
uðx; yÞ ¼ vy ; vðx; yÞ ¼ �vx; ð2:15Þ
which now satisfy (2.13) automatically, and on substitution of (2.15) into (2.14) we may deduce
ðcos 2wþ bÞvyy � 2vxy sin 2w� ðcos 2w� bÞvxx ¼ �2b
oðw; vÞ
oðx; yÞ ; ð2:16Þ
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where oðw; vÞ=oðx; yÞ denotes the usual Jacobian. Here for the special case of b ¼ 1 we may obtain
vyy cot
2 w� 2vxy cotwþ vxx ¼ �cosec2w

oðw; vÞ
oðx; yÞ ; ð2:17Þ
and in terms of hðx; yÞ ¼ cotw this equation becomes
vxx � 2hvxy þ h2vyy ¼
oðh; vÞ
oðx; yÞ : ð2:18Þ
2.2. Three-dimensional axially symmetric equations

In terms of cylindrical polar coordinates ðr; h; zÞ we consider steady quasi-static axially symmetric flow
with the z-axis vertically upwards. In this case the non-zero components of the stress tensor satisfy the

equilibrium equations
orrr

or
þ orrz

oz
þ rrr � rhh

r
¼ 0;

orrz

or
þ orzz

oz
þ rrz

r
¼ qg; ð2:19Þ
where q denotes the bulk solid density, assumed constant, g is the acceleration due to gravity and rrr, rrz, rzz

and rhh denote the usual physical Cauchy stress components which are assumed to be positive in tension.

Again, these components can be expressed in the standard form
rrr ¼ �p þ q cos 2w; rzz ¼ �p � q cos 2w; rrz ¼ q sin 2w; ð2:20Þ

where the stress invariants p, q and the stress angle w are defined by
p ¼ �1
2
ðrrr þ rzzÞ; q ¼ 1

2
fðrrr � rzzÞ2 þ 4r2

rzg
1=2

; ð2:21Þ

tan 2w ¼ 2rrz

ðrrr � rzzÞ
: ð2:22Þ
For a granular material with cohesion, the stress relations are completed with the assumption of the

Coulomb–Mohr yield condition (2.5). The above relations are generally accepted as a reasonable basis for

the determination of the stress components. Further, we need to assume a stress state corresponding to one

of the Haar–von Karman regimes, which here we adopt
rhh ¼ �p þ q: ð2:23Þ
On substitution of (2.5), (2.20) and (2.23) into (2.19), we obtain
qr ¼
b

b2 � 1
qgb sin 2w
�

þ 2q½wr sin 2w� wzðbþ cos 2wÞ� þ 1

r
qðb� 1Þðcos 2w� 1Þ

�
;

qz ¼
b

b2 � 1
qgð1
�

� b cos 2wÞ þ 2q½wrðb� cos 2wÞ � wz sin 2w� þ
1

r
qðb� 1Þ sin 2w

�
;

ð2:24Þ
where b ¼ sin/. From (2.24) it is again clear that special cases arise from b ¼ �1. We again rewrite (2.24)

in the form
ðb� 1Þðqr coswþ qz sinwÞ ¼ qgb sinwþ 2bqðwr sinw� wz coswÞ;

ðbþ 1Þðqr sinw� qz coswÞ ¼ qgb cosw� 2bq
�
wr coswþ wz sinwþ 1

r
sinw

�
;

ð2:25Þ
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so that for the special case of b ¼ 1, it follows from (2.25)1 that q is given explicitly by
q ¼ � qg
2

1

ðwr � wz cotwÞ
; ð2:26Þ
while from (2.25)2 for b ¼ 1 we find
2ðq sinwÞr ¼ qg coswþ 2ðq coswÞz �
2q
r

sinw; ð2:27Þ
and on substitution of (2.26) into (2.27) and simplifying, we obtain
hrr � 2hhrz þ h2hzz �
1

r
ðhr � hhzÞ ¼ 0; ð2:28Þ
where hðr; zÞ ¼ cotw. We observe that in the special case b ¼ �1 which arises from assuming

rhh ¼ �ðp þ qÞ, we may deduce (2.28) in a similar manner, but where hðr; zÞ ¼ � tanw. Again this is non-

physical and this case will not be discussed here. We note that Eq. (2.25) can be rewritten as
qg sinwþ 2qðwr sinw� wz coswÞ ¼ ð1� bÞ½qg sinw� qr cosw� qz sinwþ 2qðwr sinw� wz coswÞ�;

qg cosw� 2ðq sinwÞr þ 2ðq coswÞz �
2q
r

sinw

¼ ð1� bÞ qg cosw
�

� qr sinwþ qz cosw� 2q wr cosw

�
þ wz sinwþ 1

r
sinw

��
;

ð2:29Þ

which it is clear that these equations admit perturbation solutions of the form
w ¼ w0ðr; zÞ þ �w1ðr; zÞ þOð�2Þ; q ¼ q0ðr; zÞ þ �q1ðr; zÞ þOð�2Þ; ð2:30Þ

where � ¼ 1� b, with (2.30) satisfying (2.26) and (2.27) to leading order.

Next for axially symmetric flow, we also assume the non-dilatant double-shearing theory (Spencer, 1964,

1982) to determine an associated velocity profile. For steady flow the non-zero velocity components uðr; zÞ
and vðr; zÞ in the r and z directions respectively, satisfy the following equations
ou
or

þ ov
oz

þ u
r
¼ 0; ð2:31Þ

ou
oz

�
þ ov

or

�
cos 2w� ou

or

�
� ov

oz

�
sin 2wþ sin/

ou
oz

�
� ov

or
þ 2X

�
¼ 0; ð2:32Þ
where for steady flow X is defined by
X ¼ u
ow
or

þ v
ow
oz

:

Here the stream function vðr; zÞ is defined by
uðr; zÞ ¼ 1

r
vz; vðr; zÞ ¼ � 1

r
vr; ð2:33Þ
which satisfies (2.31) automatically, and on substitution of (2.33) into (2.32) we may deduce
ðcos 2wþ bÞvzz � 2vrz sin 2w� ðcos 2w� bÞvrr þ
1

r
vrðcos 2w� bÞ þ 1

r
vz sin 2w ¼ �2b

oðw; vÞ
oðr; zÞ ; ð2:34Þ
where oðw; vÞ=oðr; zÞ denotes the usual Jacobian. For the special case of b ¼ 1 we may obtain
vzz cot
2 w� 2vrz cotwþ vrr �

1

r
vr þ

1

r
vz cotw ¼ �cosec2w

oðw; vÞ
oðr; zÞ ; ð2:35Þ



N. Thamwattana, J.M. Hill / International Journal of Solids and Structures 40 (2003) 5923–5948 5931
and in terms of hðr; zÞ ¼ cotw we have
vrr � 2hvrz þ h2vzz �
1

r
ðvr � hvzÞ ¼

oðh; vÞ
oðr; zÞ : ð2:36Þ
3. The rat-hole problems

In this section we apply the two- and three-dimensional exact parametric solutions of (2.8), (2.10), (2.26)

and (2.28) as derived in Appendices A and B to determine the stress profiles in parabolic and cubical shaped

rat-holes (see Figs. 1 and 2) which are considered to be realistic rat-hole profiles, like those occurring in

practice in various granular industries.

3.1. Two-dimensional quadratic rat-holes

Here we assume that a rat-hole occurs when material is stored between vertical rigid walls and is at rest

on a rigid base, which has an infinitesimal central outlet as shown in Fig. 1. The rat-hole comprises the

upper quadratic portion, which is assumed to be determined by y ¼ ax2 ða > 0Þ and the half length of the

rigid base is ‘ and the height of the boundaries is a‘2. As shown in Appendix A, Eqs. (2.8) and (2.10) admit

the following exact parametric solution
cotw ¼ � 2

C2
2

x IðsÞ
	

þ 2e�s=2s�1=2


; q ¼ � qg

4C2
2

C4
2 þ 4x2 IðsÞ þ 2e�s=2s�1=2

	 
2h i
IðsÞ ;

y ¼
x2 s�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2
	 


C2
2

; IðsÞ ¼
Z s

e�x=2x�1=2dxþ C1; ð3:1Þ
where C1 and C2 denote arbitrary constants. In order to apply the two-dimensional exact parametric so-

lution (3.1) to determine stress profiles in two-dimensional parabolic rat-hole with a central outlet, we first

need to determine the appropriate boundary conditions.

For the stress free condition along the surface of the rat-hole, we require both the tangential and normal

stresses to vanish, namely
rt ¼ ry sin kþ rx cos k ¼ 0; rn ¼ ry cos k� rx sin k ¼ 0; ð3:2Þ

where k is the angle defined in Fig. 1, while rx and ry denote respectively the horizontal and vertical

components of the stress vector defined by
rx ¼ rxxnx þ rxyny ; ry ¼ rxynx þ ryyny ; ð3:3Þ

and nx and ny denote the corresponding components of the normal to the surface, and note that

tan k ¼ �nx=ny . On assuming the surface of the rat-hole is defined by y ¼ ax2 thus we have
nx ¼ � 2ax

ð1þ 4a2x2Þ1=2
; ny ¼

1

ð1þ 4a2x2Þ1=2
;

from which we obtain k ¼ tan�1ð2axÞ. On substitution of (2.2) and (2.5) (assuming / ¼ 90�) into (3.2) we

may deduce the boundary condition along the surface of the rat-hole, namely w ¼ tan�1ð2axÞ � p=2, which
can be simplified to obtain
� cotw ¼ 2ax: ð3:4Þ

Next for convenience we introduce C3 such that
IðsÞ ¼
Z s

0

e�x=2x�1=2dxþ C3; ð3:5Þ
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and upon letting s ¼ s1 as the parameter value along the base ðy ¼ 0Þ, we obtain from (3.1)3
Iðs1Þ ¼ � 2e�s1=2s1=21

ðs1 þ 1Þ ; ð3:6Þ
which evidently implies that the constant C3 must be negative. Next we introduce s ¼ s2 as the parameter

value along the rat-hole surface. On substitution of (3.4) into the two-dimensional exact parametric so-

lution (3.1), we find that (3.1)1 gives
aC2
2 ¼ Iðs2Þ þ 2e�s2=2s�1=2

2 ; ð3:7Þ

and along the curve y ¼ ax2 which is the surface of the rat-hole, we also have from (3.1)3 that
aC2
2 ¼ s�1

2 Iðs2Þ þ Iðs2Þ þ 2e�s2=2s�1=2
2 ; ð3:8Þ
thus from (3.7) and (3.8) we may deduce s�1
2 Iðs2Þ ¼ 0, which gives either s2 ¼ 1 or Iðs2Þ ¼ 0. We note that

these two conditions cannot be true simultaneously, for otherwise aC2
2 ¼ 0. From (3.1)2, in order for q to be

finite, we are unable to adopt Iðs2Þ ¼ 0 and thus we have s2 ¼ 1 which, together with (3.7) and (3.8)

becomes
aC2
2 ¼ Ið1Þ: ð3:9Þ
Now in order to determine the four constants a, s1, C2 and C3, and since we cannot satisfy pointwise stress

conditions at the boundaries, we assume that there are effective frictional coefficients l1 and l2 along the

vertical boundary and along the base respectively such that F1 ¼ l1N1 and F2 ¼ l2N2 where
F1 ¼
Z a‘2

0

rxy dy ¼ � qg
3C2

2

‘3
4e�s1=2s�3=2

1

ðs1 þ 1Þ

 
� Ið1Þ

!
;

N1 ¼
Z a‘2

0

rxx dy ¼ � qg
2
‘2

1

s1
;

F2 ¼
Z ‘

0

rxy dx ¼ � qg
2
‘2

1

s1
;

N2 ¼
Z ‘

0

ryy dx ¼ � 4

3

qg
C2

2

‘3
e�s1=2s�3=2

1

ðs1 þ 1Þ :

ð3:10Þ
Now from F1 ¼ l1N1 we may deduce
Ið1Þ ¼ 4e�s1=2s�3=2
1

ðs1 þ 1Þ � 3C2
2l1

2‘s1
; ð3:11Þ
and from F2 ¼ l2N2 we may obtain
C2
2 ¼

8

3
l2‘

e�s1=2s�1=2
1

ðs1 þ 1Þ ; ð3:12Þ
so that on substitution of C2
2 into (3.11) we may deduce
Ið1Þ ¼ 4e�s1=2s�3=2
1

ðs1 þ 1Þ ð1� l1l2Þ; ð3:13Þ
and further on substitution of (3.12) and (3.13) into (3.9) we obtain
a ¼ 3

2‘s1

ð1� l1l2Þ
l2

: ð3:14Þ
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Next in order to determine C3 we rewrite IðsÞ which is defined in (3.5) in terms of an error function thus

from (3.6) and (3.13) respectively, we may deduce the following equations
ffiffiffiffiffiffi
2p

p
erfðs1=2Þ1=2 þ C3 ¼ � 2e�s1=2s1=21

ðs1 þ 1Þ ;

ffiffiffiffiffiffi
2p

p
þ C3 ¼

4e�s1=2s�3=2
1

ðs1 þ 1Þ ð1� l1l2Þ;
ð3:15Þ
which by subtracting these two equations we may obtain the transcendental equation for s1, namely
ffiffiffiffiffiffi
2p

p
�

ffiffiffiffiffiffi
2p

p
erfðs1=2Þ1=2 ¼

4e�s1=2s�3=2
1

ðs1 þ 1Þ ð1� l1l2Þ þ
2e�s1=2s1=21

ðs1 þ 1Þ : ð3:16Þ
On rewriting (3.16) as
l1l2 ¼ 1� 1

4
es1=2s3=21 ðs1 þ 1Þ

ffiffiffiffiffiffi
2p

p
 

�
ffiffiffiffiffiffi
2p

p
erfðs1=2Þ1=2 � 2

e�s1=2s1=21

ðs1 þ 1Þ

!
;

so that the effective frictional coefficients l1 and l2 must satisfy the inequalities 0 < l1l2 < 1.
3.2. Three-dimensional cubic rat-holes

Here we assume that a stable rat-hole occurs when material is stored within a cylindrical bin which has

infinitesimal central outlet at the base as shown in Fig. 2. The rat-hole is assumed to comprise an upper

cubic portion which is defined by z ¼ ar3 ða > 0Þ and contained within a cylindrical bin of radius ‘ so that
the height is a‘3. As shown in Appendix B, Eqs. (2.26) and (2.28) admit the following exact parametric

solution
cotw ¼ � 3

C3
2

r2 IðsÞ
	

þ 3e�s=3s�2=3


; q ¼ � qg

12C3
2

C6
2 þ 9r4 IðsÞ þ 3e�s=3s�2=3

	 
2h i
rIðsÞ ;

z ¼
r3 2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3
	 


C3
2

; IðsÞ ¼
Z s

e�x=3x�2=3 dxþ C1; ð3:17Þ
where C1 and C2 denote arbitrary constants. In order to apply the three-dimensional exact parametric
solution (3.17) to determine the stress profile in the three-dimensional cubic rat-hole occurring in the cy-

lindrical bin with a central outlet, we first need to determine the appropriate boundary conditions.

Following the two-dimensional solution, for the stress free condition along the surface of the rat-hole,

we require both the tangential and normal stresses to vanish, namely
rt ¼ rz sin kþ rr cos k ¼ 0; rn ¼ rz cos k� rr sin k ¼ 0; ð3:18Þ

where k is the angle defined in Fig. 2(b), while rr and rz denote the radial and vertical components of the
stress vector in the cylindrical coordinate system and which are given by
rr ¼ rrrnr þ rrznz; rz ¼ rrznr þ rzznz; ð3:19Þ

where nr and nz denote the corresponding components of the normal to the surface, noting that

tan k ¼ �nr=nz. On assuming that the surface of the rat-hole is defined by z ¼ ar3, we may deduce
nr ¼ � 3ar2

ð1þ 9a2r4Þ1=2
; nz ¼

1

ð1þ 9a2r4Þ1=2
;
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which gives rise k ¼ tan�1ð3ar2Þ. On substitution of (2.5) and (2.20) with the assumption of / ¼ 90� into
(3.18) we may deduce that the boundary condition along the surface of the rat-hole, becomes

w ¼ tan�1ð3ar2Þ � p=2, which can be simplified to obtain
� cotw ¼ 3ar2: ð3:20Þ
Next we introduce C3 such that
IðsÞ ¼
Z s

0

e�x=3x�2=3dxþ C3; ð3:21Þ
and upon letting s ¼ s1 be the parameter value on the base where z ¼ 0, we have from (3.17)3 that
Iðs1Þ ¼ � 3e�s1=3s1=31

ðs1 þ 2Þ ; ð3:22Þ
which again implies that the constant C3 must be negative. Next we introduce s ¼ s2 as the parameter value

on the rat-hole surface. On substitution of (3.20) into the three-dimensional exact parametric solution

(3.17), we find that (3.17)1 gives
aC3
2 ¼ Iðs2Þ þ 3e�s2=3s�2=3

2 ; ð3:23Þ

and on the surface of the rat-hole z ¼ ar3, we also have from (3.17)3 that
aC3
2 ¼ 2s�1

2 Iðs2Þ þ Iðs2Þ þ 3e�s2=3s�2=3
2 ; ð3:24Þ
thus from (3.23) and (3.24) we may deduce s�1
2 Iðs2Þ ¼ 0 which gives either s2 ¼ 1 or Iðs2Þ ¼ 0, and again

we note that these two conditions cannot be true simultaneously, for otherwise aC3
2 ¼ 0. From (3.17)2, q

must be finite and thus Iðs2Þ ¼ 0 is not possible. Thus, we have s2 ¼ 1, which on using (3.23) and (3.24)

becomes
aC3
2 ¼ Ið1Þ: ð3:25Þ
Now in order to determine the constants a, s1, C2 and C3, since we cannot satisfy pointwise stress conditions

at the boundaries, we assume that there are effective frictional coefficients l1 and l2 on the surface and on

the base of the cylindrical bin respectively, such that F1 ¼ l1N1 and F2 ¼ l2N2 where
F1 ¼
Z h¼2p

h¼0

Z z¼a‘3

z¼0

‘rrz dzdh ¼ � 2pqg
5C3

2

‘5
18e�s1=3s�5=3

1

ðs1 þ 2Þ

 
� Ið1Þ

!
;

N1 ¼
Z h¼2p

h¼0

Z z¼a‘3

z¼0

‘rrr dzdh ¼ � 2pqg
3

‘3
1

s1
;

F2 ¼
Z h¼2p

h¼0

Z r¼‘

r¼0

rrrz drdh ¼ � 2pqg
3

‘3
1

s1
;

N2 ¼
Z h¼2p

h¼0

Z r¼‘

r¼0

rrzz drdh ¼ � 36p
5

qg
C3

2

‘5
e�s1=3s�5=3

1

ðs1 þ 2Þ :

ð3:26Þ
Now from F1 ¼ l1N1 we may deduce
Ið1Þ ¼ 18e�s1=3s�5=3
1

ðs1 þ 2Þ � 5C3
2l1

3‘2s1
ð3:27Þ
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and from F2 ¼ l2N2 we may obtain
C3
2 ¼

54

5
l2‘

2 e
�s1=3s�2=3

1

ðs1 þ 2Þ ; ð3:28Þ
so that on substitution of C3
2 into (3.27) we find
Ið1Þ ¼ 18e�s1=3s�5=3
1

ðs1 þ 2Þ ð1� l1l2Þ; ð3:29Þ
while on substitution of (3.28) and (3.29) into (3.25) we obtain
a ¼ 5

3‘2s1

ð1� l1l2Þ
l2

: ð3:30Þ
Next to determine C3 from (3.22) and (3.29) respectively we have
Z s1

0

e�x=3x�2=3 dxþ C3 ¼ � 3e�s1=3s1=31

ðs1 þ 2Þ ;

Z 1

0

e�x=3x�2=3 dxþ C3 ¼
18e�s1=3s�5=3

1

ðs1 þ 2Þ ð1� l1l2Þ;
ð3:31Þ
which by subtracting these two equations we may obtain the transcendental equation for s1, namely
Z 1

s1

e�x=3x�2=3 dx ¼ 18e�s1=3s�5=3
1

ðs1 þ 2Þ ð1� l1l2Þ þ
3e�s1=3s1=31

ðs1 þ 2Þ : ð3:32Þ
On rewriting this equation as
l1l2 ¼ 1� 1

18
es1=3s5=31 ðs1 þ 2Þ

Z 1

s1

e�x=3x�2=3 dx

 
� 3

e�s1=3s1=31

ðs1 þ 2Þ

!
;

so that the effective frictional coefficients l1 and l2 must satisfy 0 < l1l2 < 1.
4. Numerical results

In this section we illustrate graphically the parametric solutions for both two and three dimensional
curved rat-holes. For the two-dimensional problem, on prescribing l1 ¼ l2 ¼ tan p=6 we obtain from (3.16)

s1 ¼ 11:1453, and on letting ‘ ¼ 1 we have from (3.12), (3.14) and (3.15) that C2
2 ¼ 0:0001443, a ¼ 0:1554

and C3 ¼ �2:5066. Fig. 3 shows the variation of the stresses, rt, rn, rx and ry with y=x2. It is clear from this

figure that at y=x2 ¼ a which corresponds to the free surface of the rat-hole, the value of all stresses are

effectively zero, showing that the free surface condition is satisfied. Similarly, for the three-dimensional

problem, we prescribe l1 ¼ tan p=4 and l2 ¼ tan p=7, so that from (3.32) we obtain s1 ¼ 10:0126, and on

letting ‘ ¼ 1 we have from (3.28), (3.30) and (3.31) that C3
2 ¼ 0:00331, a ¼ 0:1792 and C3 ¼ �3:8631. Fig. 4

shows the variation of the stresses, rt, rn, rr and rz with z=r3. Again, it is clear from this figure that at
z=r3 ¼ a which corresponds to the free surface of the rat-hole, the value of all stresses are effectively zero,

showing that the free surface condition is satisfied.
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5. Streamlines and failure lines

In this section we illustrate the exact solutions for the velocity fields for both plane and axially symmetric

flows, by showing the streamlines, which are the particle paths, and the directions of the minimum principal

stress rIII. For the special case of / ¼ 90�, the two families of slip-lines (characteristics) coalesce, and both

have the direction dy=dx ¼ � cotw in plane strain, or dz=dr ¼ � cotw in axially symmetry. The directions

of the principal stresses rI and rIII are respectively determined by
dy
dx

¼ tanw;
dy
dx

¼ � cotw; ð5:1Þ
and similarly for the axially symmetric case,
dz
dr

¼ tanw;
dz
dr

¼ � cotw: ð5:2Þ
These show that the direction of the characteristics coincide with the direction of rIII. This is because rIII

has the larger magnitude, and therefore the material fails in the direction of rIII. Further, by showing the

particle paths or the streamlines, it can be seen that for these flows the particles paths are in the direction
of rIII which might be expected.
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5.1. Plane strain solution

From the solution (3.1)1 and (5.1) we may deduce
dy
dx

¼ � C2
2

2x IðsÞ þ 2e�s=2s�1=2ð Þ ;
dy
dx

¼ 2

C2
2

x IðsÞ
	

þ 2e�s=2s�1=2


: ð5:3Þ
On using (3.1)3 we may deduce
dy
dx

¼ 2

C2
2

x s�1IðsÞ
	

þ IðsÞ þ 2e�s=2s�1=2


� x2

C2
2

IðsÞ
s2

ds
dx

; ð5:4Þ
so that on substitution of (5.3)1;2 respectively into (5.4) we may readily deduce two differential equations,

the second of which integrates, so that altogether we have
C4
2 þ 4x2 s�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2

	 

IðsÞ þ 2e�s=2s�1=2
	 


IðsÞ þ 2e�s=2s�1=2ð Þ ¼ 2x3
IðsÞ
s2

ds
dx

; ð5:5Þ
and
C ¼ x
s1=2

; ð5:6Þ



Fig. 5. Particle paths (––) and failure lines ð� � �Þ for the plane strain solution with vðx; yÞ ¼ xgðx=y1=2Þ as determined from (5.7).
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where C denotes the constant of integration. We note that Eq. (5.5) appears not to be readily integrated

analytically, and we do not proceed further with this equation. The directions of rIII ð� � �Þ which are the

contours of (5.6) are shown in Fig. 5 with the streamlines (––) of the stream function vðx; yÞ ¼ xgðx=y1=2Þ
where gðx=y1=2Þ is determined by (see Appendix A)
gðx=y1=2Þ ¼ C3 IðsÞ
	

þ 2e�s=2s�1=2


þ C4s�1=2; ð5:7Þ
where in the figure the constants are taken as C1 ¼ 0 and C2 ¼ C3 ¼ C4 ¼ 1. We observe that the particle

paths coincide with the directions of rIII as expected.
5.2. Axially symmetric solution

From the solution (3.17)1 and (5.2) we may deduce
dz
dr

¼ � C3
2

3r2 IðsÞ þ 3e�s=3s�2=3ð Þ ;
dy
dx

¼ 3

C3
2

r2 IðsÞ
	

þ 3e�s=3s�2=3


: ð5:8Þ
On using (3.17)3 we may deduce
dz
dr

¼ 3

C3
2

r2 2s�1IðsÞ
	

þ IðsÞ þ 3e�s=3s�2=3


� 2

C3
2

r3
IðsÞ
s2

ds
dr

; ð5:9Þ
so that on substitution of (5.8)1;2 respectively into (5.9) we may readily deduce two differential equations,
the second of which integrates, so that altogether we have



Fig. 6. Particle paths (––) and failure lines ð� � �Þ for the axially symmetric solution with vðr; zÞ ¼ r2gðr=z1=3Þ as determined from (5.12).
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C6
2 þ 9r4 2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3

	 

IðsÞ þ 3e�s=3s�2=3
	 


IðsÞ þ 3e�s=3s�2=3ð Þ ¼ 2r5
IðsÞ
s2

ds
dr

; ð5:10Þ
and
C ¼ r
s1=3

; ð5:11Þ
where C denotes the constant of integration. Again we note that Eq. (5.10) appears not to be readily in-

tegrated analytically, and we do not proceed further with this equation. The directions of rIII ð. . .Þ which
are the contours of (5.11) are shown in Fig. 6 with the streamlines (––) of the stream function

vðr; zÞ ¼ r2gðr=z1=3Þ where gðr=z1=3Þ is determined by (see Appendix B)
gðr=z1=3Þ ¼ C3 IðsÞ
	

þ 3e�s=3s�2=3


þ C4s�2=3; ð5:12Þ
where in the figure the constants are taken as C1 ¼ 0 and C2 ¼ C3 ¼ C4 ¼ 1. We observe that the particle

paths coincide with the directions of rIII as expected.
6. Conclusions

On assuming the Coulomb–Mohr yield condition and the non-dilatant double-shearing theory, new

exact analytical parametric solutions for both stress and velocity fields are obtained, for the special case of

the angle of internal friction / ¼ 90�. This major assumption is made primarily to facilitate an exact an-

alytical solution. However, as discussed at length in Section 1, it may be justified principally as follows.
Firstly, there exist many real materials for which the trigonometric sine of the angle of internal friction is
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close to unity. This occurs for / in excess of 64� (namely sin 64� ¼ 0:9). Secondly, it can be shown that for

/ 6¼ p=2, the general Eqs. (2.7) and (2.25) can be couched in a form (namely (2.11) and (2.29)) from which it

is apparent that generally a regular perturbation solution can be found as expansions in the variable

1� sin/ (see Eqs. (2.12) and (2.30)) with the leading term being precisely the solutions of (2.10) and (2.28)
respectively. Thus, the solutions derived here may be exploited as the initial approximation in a regular

perturbation series. Thirdly, we emphasize that we are not dealing with the notion of infinite friction for

which no relative slip between particles is possible, but rather we are dealing here with the physical notion

of slip occurring under zero normal and tangential tractions. Finally, we emphasize that for those problems

which may be solved numerically for the full range 06/6p=2, such as the problem of gravity flow from a

hopper (Hill and Cox, 2001b) the case / ¼ p=2 is seen to behave both qualitatively and quantitatively the

same as other values of / such as / ¼ p=3 and p=6.
For the stress fields the solutions are exploited to determine the static stress distributions for highly

frictional granular solids for the two and three-dimensional rat-holes which have geometries as shown in

Figs. 1 and 2, and have free surfaces given respectively by y ¼ ax2 and z ¼ ar3, where a denotes a positive

constant determined by (3.14) and (3.30) for two and three dimensions respectively. These solutions are

bona fide exact analytical solutions for a Coulomb–Mohr granular solid and satisfy the free surface con-

ditions on the curved upper portion, and effective frictional conditions on the boundaries. The solutions

presented here are the only known analytical solutions for curved rat-hole geometries. For the associated

velocity fields the particle paths, as determined from the streamlines of the stream functions for both plane

and axially symmetric flows, are graphically shown together with the failure lines which coincide with the
direction of the minimum principal stress rIII. It is seen that the particle paths coincide with the failure lines.

This is because based on the assumption of / ¼ p=2 the maximum principal stress rI becomes zero, and rIII

has the larger magnitude and therefore the material fails in this direction.
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Appendix A. Derivation of the exact parametric solutions (3.1) and (5.7) of Eqs. (2.10) and (2.18)

In this appendix we give a brief derivation of the exact parametric solutions (3.1) and (5.7) of Eqs. (2.10)

and (2.18). Eq. (2.10) gives rise to similarity solutions with functional form
hðx; yÞ ¼ xða�1Þf ðx=y1=aÞ: ðA:1Þ
For general a the resulting non-linear ordinary differential equation for f appears not to admit a simple

analytical solution. However, the cases a ¼ 1 and a ¼ 2 admit exact solutions in parametric form. The

special case a ¼ 1 gives rise to the solution of the form hðx; yÞ ¼ f ðx=yÞ which has been exploited to

determine analytical solutions for the three problems comprising flow from a two-dimensional converg-

ing wedge shaped hopper (Hill and Cox, 2001b), secondly the stress distribution beneath a two-dimensional

wedge shaped sand-pile (Hill and Cox, 2002b) and finally the stress distribution within a two-dimensional
wedge rat-hole (Cox et al., submitted for publication).



N. Thamwattana, J.M. Hill / International Journal of Solids and Structures 40 (2003) 5923–5948 5941
For the special case a ¼ 2, the solution (A.1) becomes
hðx; yÞ ¼ xf ðnÞ; ðA:2Þ

where n ¼ x=y1=2. On substitution of (A.2) into (2.10) we may obtain
nf 00ðnÞ þ f 0ðnÞ 2

 
þ 1

4

n4f 2ðnÞ
ð1þ n2f ðnÞ=2Þ2

!
¼ 0; ðA:3Þ
where the prime here denotes differentiation with respect to n. This equation remains invariant under the

stretching transformation n1 ¼ e�n; f1 ¼ e�2�f , and therefore we may introduce the new variable j ¼ n2f , so
that upon making the Euler transformation t ¼ ln n and p ¼ jt we obtain
ðjþ 2Þ2p dp
dk

� 2pfðjþ 2Þ2 þ 2ðjþ 1Þg ¼ �8jðjþ 1Þ: ðA:4Þ
Now we introduce p ¼ 2jþ g into (A.4) to obtain
ðjþ 2Þ2ð2jþ gÞ ¼ 4gðjþ 1Þ dj
dg

; ðA:5Þ
and upon substituting jþ 2 ¼ 1=x into (A.5), we obtain
4gðx� 1Þdx
dg

¼ 2þ ðg� 4Þx: ðA:6Þ
On making the successive substitutions x ¼ vþ 1 and v ¼ mþ g=4 we may deduce the Bernouli equation
�ð4mþ 2Þ dg
dm

¼ 4gmþ g2; ðA:7Þ
which on solving in the usual way gives
1

g
¼ em

2ð2mþ 1Þ1=2
IðmÞ; ðA:8Þ
where
IðmÞ ¼
Z

e�m

ð2mþ 1Þ1=2
dmþ C�

1 ; ðA:9Þ
where C�
1 denotes the arbitrary constant.

On retracing the above transformations we find
j ¼ �
IðmÞ þ 2mIðmÞ þ e�mð2mþ 1Þ1=2
� 

ðIðmÞ þ mIðmÞ þ e�mð2mþ 1Þ1=2=2Þ

;

p ¼ 2
2me�mð2mþ 1Þ1=2IðmÞ þ e�2mð2mþ 1Þ � 2ð2mþ 1ÞI2ðmÞ

IðmÞð2IðmÞ þ 2mIðmÞ þ e�mð2mþ 1Þ1=2Þ
;

and from dt ¼ dj=p and t ¼ ln n we may deduce
t ¼
Z m IðmÞ

ð2mþ 1Þ 2IðmÞ þ 2mIðmÞ þ e�mð2mþ 1Þ1=2
� 
 dmþ C�

2 ; ðA:10Þ
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where C�
2 denotes a further arbitrary constant. Next we introduce s ¼ 2mþ 1, thus (A.10) becomes
t ¼ 1

2

Z
IðsÞ

sðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ ds;

¼ 1

2

Z
IðsÞ
s2

1

ðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ ds;

¼ � 1

2

Z
dðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ
ðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ ;

¼ lnC2ðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ�1=2
;

where IðsÞ is defined by
IðsÞ ¼
Z s

e�x=2x�1=2dxþ C1; ðA:11Þ
and C1 and C2 denote new arbitrary constants. Thus from t ¼ ln n where n ¼ x=y1=2 we may obtain
x
y1=2

¼ C2ðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ�1=2
; ðA:12Þ
and we rewrite j in terms of the parameter s as
j ¼ �2
sIðsÞ þ 2e�s=2s1=2
	 


IðsÞ þ sIðsÞ þ 2e�s=2s1=2ð Þ : ðA:13Þ
Thus from (A.2) where f ¼ j=n2 we find that the exact analytical parametric solution of (2.10) for the

special case of a ¼ 2 becomes
cotw ¼ � 2

C2
2

x IðsÞ
	

þ 2e�s=2s�1=2


: ðA:14Þ
In order to determine q, from (A.11) and (A.14) we may deduce
wx ¼ � 1

½1þ 4x2 IðsÞ þ 2e�s=2s�1=2ð Þ2=C4
2 �

2

C2
2

s�3=2e�s=2xsx

�
� 2

C2
2

IðsÞ
	

þ 2e�s=2s�1=2

�

;

wy ¼ � 1

½1þ 4x2 IðsÞ þ 2e�s=2s�1=2ð Þ2=C4
2 �

2

C2
2

s�3=2e�s=2xsy ;
ðA:15Þ
where xsx and xsy are derived by differentiation of (A.12) with respect to x and y respectively
xsx ¼ 2
s2

IðsÞ s�1IðsÞ
	

þ IðsÞ þ 2e�s=2s�1=2


;

xsy ¼ �C2
2

s2

xIðsÞ ;
ðA:16Þ
and on substitution of (A.15) and (A.16) into (2.8) and simplifying we may deduce
q ¼ � qg
4C2

2

C4
2 þ 4x2 IðsÞ þ 2e�s=2s�1=2

	 
2h i
IðsÞ : ðA:17Þ
Next for the velocity profile, we assume vðx; yÞ ¼ xgðnÞ and on substitution into (2.18) we may deduce
ng00ðnÞ þ g0ðnÞ 2

(
þ 1

2
n2f ðnÞ 1

ð1þ n2f ðnÞ=2Þ

)
� 1

2
n2

1

ð1þ n2f ðnÞ=2Þ2
f 0ðnÞgðnÞ ¼ 0; ðA:18Þ
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where the prime here denotes differentiation with respect to n. Eq. (A.18) is a homogeneous linear equation

of the second order of the form
f2ðnÞg00ðnÞ þ f1ðnÞg0ðnÞ þ f0ðnÞgðnÞ ¼ 0;
where the general solution is given by
g ¼ g0 c1

�
þ c2

Z
e�F

g20
dn

�
; ðA:19Þ
where c1 and c2 denote arbitrary constants, F ¼
R
f1=f2 dn and g0 ¼ g0ðnÞ is a non-trivial particular solution

which for Eq. (A.18) we may use g0ðnÞ ¼ f ðnÞ where f ðnÞ is given by j=n2. In order to determine F we have

from
F ¼
Z

2

n
dnþ 1

2

Z
nf ðnÞ

ð1þ n2f ðnÞ=2Þ
dn: ðA:20Þ
Now we consider the second integral of (A.20). From f ðnÞ ¼ j=n2 where n and j are determined by (A.12)
and (A.13), we obtain
1

2

Z
nf ðnÞ

ð1þ n2f ðnÞ=2Þ
dn ¼

Z
j

nð2þ jÞ dn: ðA:21Þ
In terms of the parameter s we may deduce
Z
j

nð2þ jÞ dn ¼ � 1

2

Z ðIðsÞ þ 2e�s=2s�1=2Þ
ðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ ds;

¼ � 1

2

Z
dðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ
ðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ ;

¼ � 1

2
lnðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ:

ðA:22Þ
On substitution of (A.12) and (A.22) into (A.20) we deduce
F ¼ ln
C2

2s

ðIðsÞ þ sIðsÞ þ 2e�s=2s1=2Þ3=2
; ðA:23Þ
and from g0ðnÞ ¼ f ðnÞ ¼ j=n2, we have
g0 ¼ � 2

C2
2

ðIðsÞ þ 2e�s=2s�1=2Þ;
therefore
Z
e�F

g20
dn ¼ C3

2

8

Z
IðsÞ
s1=2

1

ðs1=2IðsÞ þ 2e�s=2Þ2
ds: ðA:24Þ
Now we may rewrite the right hand side of the integral of (A.24) in the form
C3
2

8

Z
IðsÞ
s1=2

1

ðs1=2IðsÞ þ 2e�s=2Þ2
ds ¼ C3

2

4

Z
a0ðsÞ
a2ðsÞ ds ¼ �C3

2

4

1

aðsÞ þ C�; ðA:25Þ
where aðsÞ ¼ s1=2IðsÞ þ 2e�s=2 and C� denotes arbitrary constant. Therefore on substitution of (A.25) into

(A.24) we may deduce



Table 2

Tabulated comparison of the parametric solutions (A.1) of (2.10) and (2.18) for a ¼ 1 and a ¼ 2 where here r ¼ ðx2 þ y2Þ1=2

a ¼ 1 a ¼ 2

hðx; yÞ ¼ f ðx=yÞ hðx; yÞ ¼ xf ðx=y1=2Þ

cotw ¼ � IðsÞ
C2

cotw ¼ � 2
C2
2

xðIðsÞ þ 2e�s=2s�1=2Þ

y ¼ xðIðsÞ þ 2s�1=2 e�s=2Þ
C2

y ¼ x2ðs�1IðsÞ þ IðsÞ þ 2e�s=2s�1=2Þ
C2

2

IðsÞ ¼
R s x�1=2 e�x=2 dxþ C1 IðsÞ ¼

R s x�1=2 e�x=2 dxþ C1

q ¼ qgr
4

s�1=2 es=2½C2
2 þ I2ðsÞ�

fC2
2 þ ½2s�1=2 e�s=2 þ IðsÞ�2g1=2

q ¼ � qg
4C2

2

½C4
2 þ 4x2ðIðsÞ þ 2e�s=2s�1=2Þ2�

IðsÞ
vðx; yÞ ¼ gðx=yÞ vðx; yÞ ¼ xgðx=y1=2Þ

gðx=yÞ ¼ C3IðsÞ þ C4 gðx=y1=2Þ ¼ C3ðIðsÞ þ 2e�s=2s�1=2Þ þ C4s�1=2
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Z
e�F

g20
dn ¼ �C3

2

4

1

ðs1=2IðsÞ þ 2e�s=2Þ þ C;
where C denotes further arbitrary constant. Hence, from (A.19) the general solution of (A.18) is given by
gðnÞ ¼ C3ðIðsÞ þ 2e�s=2s�1=2Þ þ C4s�1=2; ðA:26Þ
where C3 and C4 denote arbitrary constants.

In order to make a comparison with the known exact parametric solutions for a ¼ 1 we present both

parametric solutions for a ¼ 1 and a ¼ 2 for both stress and velocity profiles in Table 2.
Appendix B. Derivation of the exact parametric solutions (3.17) and (5.12) of Eqs. (2.28) and (2.36)

In this appendix we give a brief derivation of the exact parametric solutions (3.17) and (5.12) of Eqs.

(2.28) and (2.36). Eq. (2.28) gives rise to similarity solutions with functional form
hðr; zÞ ¼ rða�1Þf ðr=z1=aÞ: ðB:1Þ
Again for general a the resulting non-linear ordinary differential equation for f appears not to admit a

simple analytical solution. However, the cases a ¼ 1 and a ¼ 3 admit exact solution in parametric form.

The special case of a ¼ 1 gives rise to the solution of the form hðr; zÞ ¼ f ðr=zÞ which has been exploited to

determine analytical solution for the stress distribution within a three-dimensional conical rat-hole (Cox

et al., submitted for publication).

For the special case a ¼ 3 the solution (B.1) becomes
hðr; zÞ ¼ r2f ðnÞ; ðB:2Þ
where n ¼ r=z1=3. On substitution of (B.2) into (2.28) we may deduce
nf 00ðnÞ þ f 0ðnÞ 3

(
� 1

3
n3f ðnÞ ð1� n3f ðnÞ=3Þ

ð1þ n3f ðnÞ=3Þ2

)
¼ 0; ðB:3Þ
where the prime here denotes differentiation with respect to n. This equation remains invariant under the

stretching transformation n1 ¼ e�n, f1 ¼ e�3�f , and therefore we introduce the new variable j ¼ n3f , so that
upon making the Euler transformation t ¼ ln n, and p ¼ jt we obtain
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ðjþ 3Þ2p dp
dk

� 3pfðjþ 3Þ2 þ 3ðjþ 1Þg ¼ �27jðjþ 1Þ: ðB:4Þ
Now on introducing p ¼ 3jþ g into (B.4) we obtain
ðjþ 3Þ2ð3jþ gÞ ¼ 9gðjþ 1Þ dj
dg

; ðB:5Þ
and upon introducing jþ 3 ¼ 1=x into (B.5), we have
9gð2x� 1Þdx
dg

¼ 3þ ðg� 9Þx: ðB:6Þ
On making the successive substitution x ¼ ðvþ 1Þ=2 and v ¼ mþ g=9 we may deduce the Bernouli

equation
�ð9mþ 3Þ dg
dm

¼ 9gmþ g2; ðB:7Þ
which on solving in the usual way gives
1

g
¼ em

3ð3mþ 1Þ1=3
IðmÞ; ðB:8Þ
where
IðmÞ ¼
Z

e�m

ð3mþ 1Þ2=3
dmþ C�

1 ; ðB:9Þ
where C�
1 denotes the arbitrary constant.

On retracing the above transformations we find
j ¼ � ðIðmÞ þ 3mIðmÞ þ e�mð3mþ 1Þ1=3Þ
ðIðmÞ þ mIðmÞ þ e�mð3mþ 1Þ1=3=3Þ

;

p ¼ 3
3me�mð3mþ 1Þ1=3IðmÞ þ 2e�2mð3mþ 1Þ2=3 � 3ð3mþ 1ÞI2ðmÞ

IðmÞð3IðmÞ þ 3mIðmÞ þ e�mð3mþ 1Þ1=3Þ
;

and from dt ¼ dj=p and t ¼ ln n we may deduce
t ¼
Z m 2IðmÞ

ð3mþ 1Þ 3IðmÞ þ 3mIðmÞ þ e�mð3mþ 1Þ1=3
� 
 dmþ C�

2 ; ðB:10Þ
where C�
2 denotes a further arbitrary constant. Next we introduce s ¼ 3mþ 1, thus (B.10) becomes
t ¼ 2

3

Z
IðsÞ

sð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ ds;

¼ 2

3

Z
IðsÞ
s2

1

ð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ ds;

¼ � 1

3

Z
dð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ
ð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ ;

¼ lnC2ð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ�1=3
;

where IðsÞ is defined by
IðsÞ ¼
Z s

e�x=3x�2=3dxþ C1; ðB:11Þ
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and C1 and C2 denote new arbitrary constants. Thus from t ¼ ln n where n ¼ r=z1=3 we may obtain
r
z1=3

¼ C2ð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ�1=3
; ðB:12Þ
and we rewrite j in terms of the parameter s as
j ¼ �3
sIðsÞ þ 3e�s=3s1=3
	 


2IðsÞ þ sIðsÞ þ 3e�s=3s1=3ð Þ : ðB:13Þ
Thus from (B.2) where f ¼ j=n3 we find that the exact analytical parametric solution of (2.28) for the

special case of a ¼ 3 becomes
cotw ¼ � 3

C3
2

r2 IðsÞ
	

þ 3e�s=3s�2=3


: ðB:14Þ
In order to determine q, from (B.11) and (B.14) we may deduce
wr ¼ � 1

½1þ 9r4 IðsÞ þ 3e�s=3s�2=3ð Þ2=C6
2 �

6

C3
2

s�5=3e�s=3r2sr

�
� 6

C3
2

r IðsÞ
	

þ 3e�s=3s�2=3

�

;

wz ¼ � 1

½1þ 9r4 IðsÞ þ 3e�s=3s�2=3ð Þ2=C6
2 �

6

C3
2

s�5=3e�s=3r2sz;
ðB:15Þ
where r2sr and r2sz are derived by differentiation of (B.12) with respect to r and z respectively
r2sr ¼
3

2
r
s2

IðsÞ 2s�1IðsÞ
	

þ IðsÞ þ 3e�s=3s�2=3


;

r2sz ¼ �C3
2

2

s2

rIðsÞ ;
ðB:16Þ
and on substitution of (B.15) and (B.16) into (2.26) and simplifying we may deduce
q ¼ � qg
12C3

2

C6
2 þ 9r4 IðsÞ þ 3e�s=3s�2=3

	 
2h i
rIðsÞ : ðB:17Þ
Next for the velocity profile, we assume vðr; zÞ ¼ r2gðnÞ and on substitution into (2.36) we may deduce
ng00ðnÞ þ g0ðnÞ 3

(
þ 1

3
n3f ðnÞ 1

ð1þ n3f ðnÞ=3Þ

)
� 2

3
n3

1

ð1þ n3f ðnÞ=3Þ2
f 0ðnÞgðnÞ ¼ 0; ðB:18Þ
where the prime denotes differentiation with respect to n. Eq. (B.18) is also a homogeneous linear equation

of the second order where the general solution can be found from the formula (A.19). Again we may use

g0ðnÞ ¼ f ðnÞ where f ðnÞ ¼ j=n3. In order to determine F we have from
F ¼
Z

3

n
dnþ 1

3

Z
n2f ðnÞ

ð1þ n3f ðnÞ=3Þ
dn: ðB:19Þ
Now we consider the second integral of (B.19). From f ðnÞ ¼ j=n3 where n and j are determined by (B.12)

and (B.13), we obtain
1

3

Z
n2f ðnÞ

ð1þ n3f ðnÞ=3Þ
dn ¼

Z
j

nð3þ jÞ dn: ðB:20Þ
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In terms of the parameter s we may deduce
Table

Tabula

a ¼
hðr;

cotw

z ¼

IðsÞ

q ¼

vðr;

gðr=
Z
j

nð3þ jÞ dn ¼ � 1

3

Z ðIðsÞ þ 3e�s=3s�2=3Þ
ð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ ds;

¼ � 1

3

Z
dð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ
ð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ ;

¼ � 1

3
lnð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ:

ðB:21Þ
On substitution of (B.12) and (B.21) into (B.19) we deduce
F ¼ ln
C3

2s

ð2IðsÞ þ sIðsÞ þ 3e�s=3s1=3Þ4=3
; ðB:22Þ
and from g0ðnÞ ¼ f ðnÞ ¼ j=n3 we have
g0 ¼ � 3

C3
2

ðIðsÞ þ 3e�s=3s�2=3Þ;
therefore
Z
e�F

g20
dn ¼ 2C4

2

27

Z
IðsÞ
s1=3

1

ðs2=3IðsÞ þ 3e�s=3Þ2
ds: ðB:23Þ
Now we may rewrite the right hand side of the integral of (B.23) in the form
2C4
2

27

Z
IðsÞ
s1=3

1

ðs2=3IðsÞ þ 3e�s=3Þ2
ds ¼ C4

2

9

Z
a0ðsÞ
a2ðsÞ ds ¼ �C4

2

9

1

aðsÞ þ C�; ðB:24Þ
where aðsÞ ¼ s2=3IðsÞ þ 3e�s=3 and C� denotes arbitrary constant. Therefore on substitution of (B.24) into
(B.23) we may deduce
Z

e�F

g20
dn ¼ �C4

2

9

1

ðs2=3IðsÞ þ 3e�s=3Þ þ C;
where C denotes further arbitrary constant. Hence, from (A.19) the general solution of (B.18) is given by
gðnÞ ¼ C3ðIðsÞ þ 3e�s=3s�2=3Þ þ C4s�2=3; ðB:25Þ

where C3 and C4 denote arbitrary constant.
3

ted comparison of the parametric solutions (B.1) of (2.28) and (2.36) for a ¼ 1 and a ¼ 3 where here R ¼ ðr2 þ z2Þ1=2

1 a ¼ 3

zÞ ¼ f ðr=zÞ hðr; zÞ ¼ r2f ðr=z1=3Þ

¼ � IðsÞ
C2

cotw ¼ � 3

C3
2

r2ðIðsÞ þ 3e�s=3s�2=3Þ

rðIðsÞ þ 3s�1=3 e�s=3Þ
C2

z ¼ r3ð2s�1IðsÞ þ IðsÞ þ 3e�s=3s�2=3Þ
C3

2

¼
R s x�1=3 e�x=3 dxþ C1 IðsÞ ¼

R s x�2=3 e�x=3 dxþ C1

qgR
6

s�2=3 es=3½C2
2 þ I2ðsÞ�

fC2
2 þ ½3s�1=3e�s=3 þ IðsÞ�2g1=2

q ¼ � qg
12C3

2

½C6
2 þ 9r4ðIðsÞ þ 3e�s=3s�2=3Þ2�

rIðsÞ
zÞ ¼ gðr=zÞ vðr; zÞ ¼ r2gðr=z1=3Þ

zÞ ¼ C3IðsÞ þ C4 gðr=z1=3Þ ¼ C3ðIðsÞ þ 3e�s=3s�2=3Þ þ C4s�2=3
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In order to make a comparison with the known exact parametric solutions for a ¼ 1 we present both

parametric solutions for a ¼ 1 and a ¼ 3 for both stress and velocity profiles in Table 3.
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